March 15 MATH 1112 sec. 54 Spring 2019

Let's Recall the basic plots $y=\sin x$ and $y=\cos x$

Figure: Some points on the sine graph are $(0,0),\left(\frac{\pi}{2}, 1\right),(\pi, 0),\left(\frac{3 \pi}{2},-1\right)$, $(2 \pi, 0)$.
Some points on the cosine graph are $(0,1),\left(\frac{\pi}{2}, 0\right),(\pi,-1),\left(\frac{3 \pi}{2}, 0\right),(2 \pi, 1)$

Section 6.6: Graphing Trigonometric Functions with Transformations

Our goal is to graph functions of the form

$$
f(x)=a \sin (b x-c)+d \quad \text { or } \quad f(x)=a \cos (b x-c)+d
$$

Note: here we will be graphing points (x, y) on a curve $y=f(x)$.

Amplitude

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Definition: Let a be any nonzero real number. The amplitude of the function f defined above is the value $|a|$.

Recall that this is half the distance between the maximum and minimum values.

If $a<0$ the graph is reflected in the x-axis. But the amplitude is still $|a|$.

Amplitude

$f(x)=\operatorname{asin} x$

$f(x)=\operatorname{acos} x$

Example

Identify the amplitude A of each function. Determine if the graph is reflected in the x-axis.
(a) $f(x)=3 \sin (4 x-2)+1$

$$
A=|3|=3
$$

(b) $f(x)=2-6 \cos (2 x+3)$

$$
A=|-6|=6
$$

Question

The amplitude A of the function $y=2-\sin (3 x+1)$ is

$$
A=|-1|=1
$$

(b) -1
(c) 3
(d) 2

Period

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Theorem: Let b be any positive real number. The fundamental period of the function f above is given by

$$
T=\frac{2 \pi}{|b|}
$$

Recall that the fundamental period of $\cos x$ and $\sin x$ is 2π.

Period

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Due to symmetry, we can always assume $b>0$. Note for example

$$
\sin (-3 x+2)=\sin (-(3 x-2))=-\sin (3 x-2)
$$

The period is always positive. The period in this example is $\frac{2 \pi}{3}$. Based on this, some authors say that $b>0$ and that the period

$$
T=\frac{2 \pi}{b}
$$

Period

Figure: Comparisons with $b=1 / 2,1$, and 2 . On the interval $-2 \pi<x<2 \pi$ we obtain one $(b=1 / 2)$, two $(b=1)$ or four $(b=2)$ full cycles.

Example

Identify the period of each function. Call the period T
(a) $f(x)=3 \sin (4 x-2)+1$

$$
\begin{aligned}
& (4 x-2)+1 \\
& b=4
\end{aligned} \text { so } T=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

(b) $\quad f(x)=-5 \sin \left(\frac{\pi x}{2}\right)+7$

$$
b=\frac{\pi}{2} \quad \text { so } \quad T=\frac{2 \pi}{\pi / 2}=2 \pi\left(\frac{2}{\pi}\right)=4
$$

Frequency

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Definition: The reciprocal of the period is called the frequency. That is

$$
\text { frequency }=\frac{1}{T}=\frac{b}{2 \pi} \text {. }
$$

If x represents time, then

- the period tells us how much time is required for one full cycle, and
- the frequency tells us how many cycles occur in one time unit.

If $y=\cos (b x)$ (or $y=\sin (b x)$), then b the number of cycles occuring in an interval of length 2π.

Question

Figure: Hint: Count the number of full cycles.

Phase Shift (horizontal shift)

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$ Definition: A horizontal shift is called a phase shift. Again assuming that $b>0$, the phase shift for f above is

$$
\frac{|c|}{b} \text { units } \quad \sin \left(b\left(x-\frac{c}{b}\right)\right)
$$

to the right if $c>0$ and to the left if $c<0$.

Question

Recall that for $f(x)=a \sin (b x-c)+d$, the phase shift is $\left|\frac{c}{b}\right|$
The phase shift of $y=3 \cos \left(2 x-\frac{\pi}{2}\right)$ is
(a) π and to the right

$$
c=\frac{\pi}{2}, \quad b=2
$$

(b) $\frac{\pi}{3}$ and to the right

$$
\frac{c}{6}=\frac{\pi / 2}{2}=\frac{\pi}{4}
$$

(c) $\frac{\pi}{4}$ and to the right
(d) $\frac{\pi}{4}$ and to the left
$C>0$
(e) π and to the left

Vertical Shift

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$ Definition: If d is a nonzero number, then the function f has a vertical shift of $|d|$ units up if $d>0$ and down if $d<0$.

Question

Regarding the function $f(x)=-5 \sin \left(\frac{\pi X}{2}\right)-7$, there is a
(a) vertical shift down 5 units
(b) vertical shift down 7 units
(c) vertical shift up 7 units
(d) vertical shift down 12 units

Parent Plots

The period can be divided into four equal segments.
For the sine function $\quad x$-int $\rightarrow \max \rightarrow x$-int \rightarrow min $\rightarrow x$-int

Parent Plots

The period can be divided into four equal segments.
For the cosine function $\max \rightarrow x$-int \rightarrow min $\rightarrow x$-int $\rightarrow \max$

Pulling it all Together!

Plot two full periods of the function $f(x)=a \sin (b x-c)+d$ (or $f(x)=a \cos (b x-c)+d)$. Carry out each of the following steps:

- Identify the amplitude and determine if there is an x-axis reflection.
- Identify the period. Find the length of one fourth of the period.
- Identify any phase shift with its direction. Identify end points and points that divide the period into four equal parts.
- Identify any vertical shift with its direction.
- Use the basic plot of $y=\sin x$ or $y=\cos x$ to get the profile.

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)=-4 \cos \left(\pi x-\frac{\pi}{2}\right)+2
$$

Identify the amplitude and period. Determine if there is a reflection in the x-axis. Find the length of one quarter period.

$$
\underset{\text { rot }}{\substack{\text { ret } \\ \text { rely }}} a=-4, b=\pi, c=\pi / 2, d=2
$$

Amplitude $A=|-4|=4$
$-4<0$, so there is a horizontal reflection
Pernod $T=\frac{2 \pi}{b}=\frac{2 \pi}{\pi}=2$
A quarter period is $\frac{2}{4}=\frac{1}{2}$ units

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)
$$

Identify any phase shift and vertical shift along with direction. Determine the end points and points that divide the period into four parts.

$$
c=\frac{\pi}{2} \quad \text { and } \quad b=\pi
$$

So there is a phase shift $\left|\frac{c}{b}\right|=\frac{\pi / 2}{\pi}=\frac{1}{2}$ to the right
$d=2$ so the ne is a vertical shift up 2 .
End points for a peiod are

$$
\begin{aligned}
& \text { ts for a period are } \\
& \text { left © } x=\frac{1}{2} \text {, right } \text { e } x=\frac{1}{2}+2=\frac{5}{2}
\end{aligned}
$$

$f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)$

Plot two periods of its graph.

