March 18 MATH 1112 sec. 54 Spring 2019

Section 7.4: Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) " $\frac{1}{2}$ ". What if the question is reversed? What if someone asks
"What angle has a sine value of $\frac{1}{2}$?"
One answer is $\frac{\pi}{6}$. Another answer is $\frac{5 \pi}{6}$
There are, intact, infinitely many correct
answers.

Restricting the Domain of $\sin (x)$

Figure: To define an inverse sine function, we start by restricting the domain of $\sin (x)$ to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval $[-1,1]$ the inverse sine of x is denoted by either

$$
\sin ^{-1}(x) \text { or } \arcsin (x)
$$

and is defined by the relationship

$$
y=\sin ^{-1}(x) \quad \Longleftrightarrow \quad x=\sin (y) \quad \text { where } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} .
$$

The Domain of the Inverse Sine is $-1 \leq x \leq 1$.
The Range of the Inverse Sine is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$
\sin ^{-1}(x) \neq \frac{1}{\sin (x)}
$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$
\frac{1}{\sin (x)}=(\sin (x))^{-1} \quad \text { or write } \quad \frac{1}{\sin (x)}=\csc (x)
$$

Conceptual Definition ${ }^{1}$

We can think of the inverse sine function in the following way:
$\sin ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.
For example $\sin ^{-1}\left(\frac{1}{2}\right)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is $\frac{1}{2}$.

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \quad \text { since } \quad \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
$$

${ }^{1}$ We want to consider $f(x)=\sin ^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a very useful conceptual device for working with and evaluating this function.

Example

Evaluate exactly. $\operatorname{Sin}^{-1}\left(\frac{-\sqrt{3}}{2}\right)$ is the angle between $\cdot \frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is

$$
\begin{array}{rll}
\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right) \\
=\frac{-\pi}{3} & \text { Note } \frac{-\pi}{2}<-\frac{\pi}{3}<\frac{\pi}{2} & \frac{-\sqrt{3}}{2}
\end{array}
$$

Question

The value of $\sin ^{-1} 1$ is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$

$$
\text { If } \theta=\sin ^{-1}(1) \text {, then }
$$

$$
\sin (\theta)=1
$$

and $\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
(c) 0
(d) 0 and π

The Graph of the Arcsine

Figure: Note that the domain is $-1 \leq x \leq 1$ and the range is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

The Inverse Cosine Function

Figure: To define an inverse cosine function, we start by restricting the domain of $\cos (x)$ to the interval $[0, \pi]$

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval $[-1,1]$ the inverse cosine of x is denoted by either

$$
\cos ^{-1}(x) \text { or } \arccos (x)
$$

and is defined by the relationship

k

$$
y=\cos ^{-1}(x) \quad \Longleftrightarrow \quad x=\cos (y) \quad \text { where } \quad 0 \leq y \leq \pi
$$

The Domain of the Inverse Cosine is $-1 \leq x \leq 1$.
The Range of the Inverse Cosine is $0 \leq y \leq \pi$.

The Graph of the Arccosine

Figure: Note that the domain is $-1 \leq x \leq 1$ and the range is $0 \leq y \leq \pi$.

Conceptual Definition

We can think of the inverse cosine function in the following way: $\cos ^{-1}(x)$ is the angle between 0 and π whose cosine is x. $\operatorname{Cos}^{-1}\left(\frac{1}{2}\right)$ is the angle between 0 and π whose cosine is $\frac{1}{2}, \operatorname{Cos} \frac{\pi}{3}=\frac{1}{2}$ and $0<\frac{\pi}{3}<\pi$

So

$$
\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

Question

Both of the following are true statements:

$$
\cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \quad \text { and } \quad \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

The value of $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is
(a) $\frac{\pi}{4}$ and $-\frac{\pi}{4} \leftarrow$ cant hae 2 outputs
(b) just $-\frac{\pi}{4} \leftarrow$ not in the range $[0, \pi]$
(c) just $\frac{\pi}{4}$
(d) all of the above are technically correct

The Inverse Tangent Function

Figure: To define an inverse tangent function, we start by restricting the domain of $\tan (x)$ to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers x, the inverse tangent of x is denoted by

$$
\tan ^{-1}(x) \text { or by } \arctan (x)
$$

and is defined by the relationship

$$
y=\tan ^{-1}(x) \quad \Longleftrightarrow \quad x=\tan (y) \text { where }-\frac{\pi}{2}<y<\frac{\pi}{2} .
$$

The Domain of the Inverse Tangent is $-\infty<x<\infty$.
The Range of the Inverse Cosine is $-\frac{\pi}{2}<y<\frac{\pi}{2}$ (Note the strict inequalities.).

The Graph of the Arctangent

Figure: The domain is all real numbers and the range is $-\frac{\pi}{2}<y<\frac{\pi}{2}$. The graph has two horizontal asymptotes $y=-\frac{\pi}{2}$ and $y=\frac{\pi}{2}$.

Conceptual Definition

We can think of the inverse tangent function in the following way: $\tan ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x. $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ is the angle between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is $\frac{1}{\sqrt{3}} \cdot \tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$. And $\frac{-\pi}{2}<\frac{\pi}{6}<\frac{\pi}{2}$. So

$$
\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
$$

Question

Both of the following are true statements:

$$
\tan \left(\frac{5 \pi}{4}\right)=1 \quad \text { and } \quad \tan \left(\frac{\pi}{4}\right)=1
$$

The value of $\tan ^{-1}(1)$ is
(a) $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$
(b) just $\frac{5 \pi}{4}$
(c) just $\frac{\pi}{4}$
(d) all of the above are technically correct

Recap: Inverse Sine, Cosine, and Tangent

Function	Domain	Range
$\sin ^{-1}(x)$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1}(x)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(x)$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is typically defined for all real numbers x by

$$
y=\cot ^{-1}(x) \quad \Longleftrightarrow \quad x=\cot (y) \text { for } 0<y<\pi
$$

There is less consensus regarding the inverse secant and cosecant functions.

A Work-Around

Use the fact that $\sec \theta=\frac{1}{\cos \theta}$ to find an expression for $\sec ^{-1}(x)$.
Let $\theta=\sec ^{-1}(x)$, then $\sec \theta=x$. If $x \neq 0$
thin

$$
\begin{gathered}
\frac{1}{\sec \theta}=\frac{1}{x} \Rightarrow \cos \theta=\frac{1}{x} \\
\cos \theta=\frac{1}{x} \text { given } \theta=\cos ^{-1}\left(\frac{1}{x}\right)
\end{gathered}
$$

provided $0 \leq \theta \leq \pi$ and $x \neq 0$.
Use your result to compute (an acceptable value for) $\sec ^{-1}(\sqrt{2})$

$$
\sec ^{-1}(\sqrt{2})=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
$$

A Work-Around

We can use the following compromise to compute inverse cotangent, secant, and cosecant values ${ }^{2}$:

For those values of x for which each side of the equation is defined

$$
\begin{aligned}
& \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right) \\
& \csc ^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

[^0]
Function/Inverse Function Relationship

For every x in the interval $[-1,1]$

$$
\sin \left(\sin ^{-1}(x)\right)=x
$$

For every x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin ^{-1}(\sin (x))=x
$$

Remark 1: If $x>1$ or $x<-1$, the expression $\sin ^{-1}(x)$ is not defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\sin ^{-1}(\sin (x))$ IS defined, but IS NOT equal to x.

Function/Inverse Function Relationship

For every x in the interval $[-1,1]$

$$
\cos \left(\cos ^{-1}(x)\right)=x
$$

For every x in the interval $[0, \pi]$

$$
\cos ^{-1}(\cos (x))=x
$$

Remark 1: If $x>1$ or $x<-1$, the expression $\cos ^{-1}(x)$ is not defined.
Remark 2: If $x>\pi$ or $x<0$, the expression $\cos ^{-1}(\cos (x))$ IS defined, but IS NOT equal to x.

Function/Inverse Function Relationship

For all real numbers x

$$
\tan \left(\tan ^{-1}(x)\right)=x
$$

For every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\tan ^{-1}(\tan (x))=x
$$

Remark 1:The expression $\tan ^{-1}(x)$ is always well defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\tan ^{-1}(\tan (x))$ MAY BE defined, but IS NOT equal to x.

Example
Evaluate each expression if possible. If it is not defined, give a reason.
(a)

$$
\begin{aligned}
\sin & {\left[\sin ^{-1}\left(\frac{1}{2}\right)\right] \quad-1 \leq \frac{1}{2} \leq 1 } \\
& =\frac{1}{2}
\end{aligned}
$$

Example
(b)

$$
\begin{gathered}
\cos ^{-1}\left[\cos \left(\frac{9 \pi}{8}\right)\right] \\
=\frac{7 \pi}{8}
\end{gathered}
$$

reteunce anghe

$$
\theta^{\prime}=\frac{\pi}{8}
$$

$$
\operatorname{Cos}\left(\frac{7 \pi}{8}\right)=\operatorname{Cos}\left(\frac{9 \pi}{8}\right)
$$

Tquod II

[^0]: ${ }^{2}$ Keep in mind that there is disagreement about the ranges!

