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Section 7.4: Inverse Trigonometric Functions

Question: If someone asks ”what is the sine of π
6 ?” we can respond

with the answer (from memory or perhaps using a calculator) ”1
2 ”.

What if the question is reversed? What if someone asks

”What angle has a sine value of 1
2?”
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Restricting the Domain of sin(x)

Figure: To define an inverse sine function, we start by restricting the domain
of sin(x) to the interval

[
−π

2 ,
π
2

]
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The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval [−1,1] the inverse sine of x is denoted
by either

sin−1(x) or arcsin(x)

and is defined by the relationship

y = sin−1(x) ⇐⇒ x = sin(y) where − π

2
≤ y ≤ π

2
.

The Domain of the Inverse Sine is −1 ≤ x ≤ 1.

The Range of the Inverse Sine is −π
2 ≤ y ≤ π

2 .
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Notation Warning!

Caution: We must remember not to confuse the superscript −1
notation with reciprocal. That is

sin−1(x) 6= 1
sin(x)

.

If we want to indicate a reciprocal, we should use parentheses or
trigonometric identities

1
sin(x)

= (sin(x))−1 or write
1

sin(x)
= csc(x).
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Conceptual Definition1

We can think of the inverse sine function in the following way:

sin−1(x) is the angle between −π
2 and π

2 whose sine is x .

1We want to consider f (x) = sin−1 x as a real valued function of a real variable
without necessary reference to angles, triangles, or circles. But the above is a very
useful conceptual device for working with and evaluating this function.
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Example

Evaluate exactly.

sin−1

(
−
√

3
2

)
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Question

The value of sin−1 1 is

(a)
π

2

(b)
π

2
and

5π
2

(c) 0

(d) 0 and π
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The Graph of the Arcsine

Figure: Note that the domain is −1 ≤ x ≤ 1 and the range is −π
2 ≤ y ≤ π

2 .
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The Inverse Cosine Function

Figure: To define an inverse cosine function, we start by restricting the
domain of cos(x) to the interval [0, π]
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The Inverse Cosine Function (a.k.a. arccosine
function)

Definition: For x in the interval [−1,1] the inverse cosine of x is
denoted by either

cos−1(x) or arccos(x)

and is defined by the relationship

y = cos−1(x) ⇐⇒ x = cos(y) where 0 ≤ y ≤ π.

The Domain of the Inverse Cosine is −1 ≤ x ≤ 1.

The Range of the Inverse Cosine is 0 ≤ y ≤ π.
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The Graph of the Arccosine

Figure: Note that the domain is −1 ≤ x ≤ 1 and the range is 0 ≤ y ≤ π.
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Conceptual Definition

We can think of the inverse cosine function in the following way:

cos−1(x) is the angle between 0 and π whose cosine is x .
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Question
Both of the following are true statements:

cos
(
−π

4

)
=

1√
2

and cos
(π

4

)
=

1√
2

The value of cos−1
(

1√
2

)
is

(a)
π

4
and −π

4

(b) just −π
4

(c) just
π

4

(d) all of the above are technically correct
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The Inverse Tangent Function

Figure: To define an inverse tangent function, we start by restricting the
domain of tan(x) to the interval

(
−π

2 ,
π
2

)
. (Note the end points are NOT

included!)
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The Inverse Tangent Function (a.k.a. arctangent
function)

Definition: For all real numbers x , the inverse tangent of x is denoted
by

tan−1(x) or by arctan(x)

and is defined by the relationship

y = tan−1(x) ⇐⇒ x = tan(y) where − π

2
< y <

π

2
.

The Domain of the Inverse Tangent is −∞ < x <∞.

The Range of the Inverse Cosine is −π
2 < y < π

2 (Note the strict
inequalities.).
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The Graph of the Arctangent

Figure: The domain is all real numbers and the range is −π
2 < y < π

2 . The
graph has two horizontal asymptotes y = −π

2 and y = π
2 .
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Conceptual Definition

We can think of the inverse tangent function in the following way:

tan−1(x) is the angle between −π
2 and π

2 whose tangent is x .
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Question
Both of the following are true statements:

tan
(

5π
4

)
= 1 and tan

(π
4

)
= 1

The value of tan−1 (1) is

(a)
π

4
and

5π
4

(b) just
5π
4

(c) just
π

4

(d) all of the above are technically correct
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Recap: Inverse Sine, Cosine, and Tangent

Function Domain Range
sin−1(x) [−1,1]

[
−π

2 ,
π
2

]
cos−1(x) [−1,1] [0, π]

tan−1(x) (−∞,∞)
(
−π

2 ,
π
2

)
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Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the
inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is typically defined for all real
numbers x by

y = cot−1(x) ⇐⇒ x = cot(y) for 0 < y < π.

There is less consensus regarding the inverse secant and cosecant
functions.
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A Work-Around

Use the fact that sec θ = 1
cos θ to find an expression for sec−1(x).

Use your result to compute (an acceptable value for) sec−1(
√

2)
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A Work-Around

We can use the following compromise to compute inverse cotangent,
secant, and cosecant values2:

For those values of x for which each side of the equation is defined

cot−1(x) = tan−1
(

1
x

)
,

csc−1(x) = sin−1
(

1
x

)
,

sec−1(x) = cos−1
(

1
x

)
.

2Keep in mind that there is disagreement about the ranges!
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Function/Inverse Function Relationship

For every x in the interval [−1,1]

sin
(

sin−1(x)
)
= x

For every x in the interval
[
−π

2 ,
π
2

]
sin−1 (sin(x)) = x

Remark 1: If x > 1 or x < −1, the expression sin−1(x) is not defined.

Remark 2: If x > π
2 or x < −π

2 , the expression sin−1 (sin(x)) IS
defined, but IS NOT equal to x .
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Function/Inverse Function Relationship

For every x in the interval [−1,1]

cos
(

cos−1(x)
)
= x

For every x in the interval [0, π]

cos−1 (cos(x)) = x

Remark 1: If x > 1 or x < −1, the expression cos−1(x) is not defined.

Remark 2: If x > π or x < 0, the expression cos−1 (cos(x)) IS defined,
but IS NOT equal to x .
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Function/Inverse Function Relationship

For all real numbers x

tan
(

tan−1(x)
)
= x

For every x in the interval
(
−π

2 ,
π
2

)
tan−1 (tan(x)) = x

Remark 1:The expression tan−1(x) is always well defined.

Remark 2: If x > π
2 or x < −π

2 , the expression tan−1 (tan(x)) MAY BE
defined, but IS NOT equal to x .
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Example
Evaluate each expression if possible. If it is not defined, give a reason.

(a) sin
[
sin−1

(
1
2

)]
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Example

(b) cos−1
[
cos

(
9π
8

)]
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