March 18 MATH 1112 sec. 54 Spring 2019

Section 7.4: Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) " $\frac{1}{2}$ ". What if the question is reversed? What if someone asks

"What angle has a sine value of
$$\frac{1}{2}$$
?"
One answer is $\frac{11}{6}$. Another answer is $\frac{5\pi}{6}$.
There are intect, infinitely many correct
answers.

March 15, 2019 1 / 30

イロト 不得 トイヨト イヨト 二日

Restricting the Domain of sin(x)

Figure: To define an inverse sine function, we start by restricting the domain of sin(x) to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval [-1, 1] the inverse sine of x is denoted by either

$$\sin^{-1}(x)$$
 or $\arcsin(x)$

and is defined by the relationship

$$y = \sin^{-1}(x) \iff x = \sin(y)$$
 where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}.$

イロト 不得 トイヨト イヨト 二日

March 15, 2019

3/30

The Domain of the Inverse Sine is $-1 \le x \le 1$.

The Range of the Inverse Sine is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}.$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$\frac{1}{\sin(x)} = (\sin(x))^{-1} \quad \text{or write} \quad \frac{1}{\sin(x)} = \csc(x).$$

Conceptual Definition¹

guedrants I We can think of the inverse sine function in the following way: $\sin^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x. For example Sin'(1) is the angle between $-\frac{\pi}{2} \text{ and } \frac{\pi}{2} \text{ whose Sine is } \frac{1}{2} \text{ .}$ $\operatorname{Sin}^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2} \text{ Since } \operatorname{Sin}\left(\frac{\pi}{2}\right) = \frac{1}{2}$

¹We want to consider $f(x) = \sin^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a **very useful** conceptual device for working with and evaluating this function x + z = x + z

Example

 $\sin\left(-\frac{\sqrt{3}}{2}\right)$ is the onste between Evaluate exactly. Z/ The and The whose sine is -J7 1 The $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ Sin = -1 Τ

Question

The value of sin⁻¹ 1 is

If $\theta = \sin^{-1}(1)$, then $\sin(\theta) = 1$ $\sin^{-\frac{\pi}{2}} \le \theta \le \frac{\pi}{2}$

(c) 0

(d) 0 and π

イロト 不得 トイヨト イヨト 二日

The Graph of the Arcsine

Figure: Note that the domain is $-1 \le x \le 1$ and the range is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Figure: To define an inverse cosine function, we start by restricting the domain of cos(x) to the interval $[0, \pi]$

March 15, 2019

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval [-1, 1] the inverse cosine of x is denoted by either

$$\cos^{-1}(x)$$
 or $\arccos(x)$

and is defined by the relationship

$$y = \cos^{-1}(x) \iff x = \cos(y)$$
 where $0 \le y \le \pi$.

The Domain of the Inverse Cosine is $-1 \le x \le 1$.

The Range of the Inverse Cosine is $0 \le y \le \pi$.

Jose one

The Graph of the Arccosine

Figure: Note that the domain is $-1 \le x \le 1$ and the range is $0 \le y \le \pi$.

March 15, 2019 11 / 30

Conceptual Definition

We can think of the inverse cosine function in the following way:

 $\cos^{-1}(x)$ is the angle between 0 and π whose cosine is x. $C_{0S}'\left(\frac{1}{2}\right)$ is the angle between O and π whose C_{0S} ine is $\frac{1}{2}$. $C_{0S} = \frac{1}{2}$ and $O < \frac{\pi}{3} < \pi$

$$G_{0S}^{(1)}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

March 15, 2019 12 / 30

Question Both of the following are true statements:

(a)

(b)

(C)

$$\cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

The value of $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is
(a) $\frac{\pi}{4}$ and $-\frac{\pi}{4}$ \in cat have 2 ortents
(b) just $-\frac{\pi}{4}$ \in not in the range $[0,\pi]$
(c) just $\frac{\pi}{4}$

March 15, 2019

13/30

(d) all of the above are *technically* correct

The Inverse Tangent Function

Figure: To define an inverse tangent function, we start by restricting the domain of tan(x) to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers x, the inverse tangent of x is denoted by

tan⁻¹(x) or by
$$\arctan(x)$$

and is defined by the relationship
 $y = \tan^{-1}(x) \iff x = \tan(y)$ where $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

The Domain of the Inverse Tangent is $-\infty < x < \infty$.

а

The Range of the Inverse Cosine is $-\frac{\pi}{2} < y < \frac{\pi}{2}$ (Note the strict inequalities.).

イロト 不得 トイヨト イヨト 二日

March 15, 2019

The Graph of the Arctangent

Figure: The domain is all real numbers and the range is $-\frac{\pi}{2} < y < \frac{\pi}{2}$. The graph has two horizontal asymptotes $y = -\frac{\pi}{2}$ and $y = \frac{\pi}{2}$.

Conceptual Definition

We can think of the inverse tangent function in the following way:

 $\tan^{-1}(x) \text{ is the angle between } -\frac{\pi}{2} \text{ and } \frac{\pi}{2} \text{ whose tangent is } x.$ $t_{on}^{-1}\left(\frac{1}{\sqrt{3}}\right) \text{ is the angle between } \frac{\pi}{2} \text{ and } \frac{\pi}{2}$ $whose tangent \text{ is } \frac{1}{\sqrt{3}} \text{ tan}\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \text{ .}$ $And \quad \frac{\pi}{2} < \frac{\pi}{6} < \frac{\pi}{2} \text{ . Su}$ $t_{on}^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$

March 15, 2019 17 / 30

イロト 不得 トイヨト イヨト ヨー ろくの

Question Both of the following are true statements:

$$\tan\left(\frac{5\pi}{4}\right) = 1 \quad \text{and} \quad \tan\left(\frac{\pi}{4}\right) = 1$$

The value of
$$tan^{-1}(1)$$
 is

(a)
$$\frac{\pi}{4}$$
 and $\frac{5\pi}{4}$
(b) just $\frac{5\pi}{4}$
(c) just $\frac{\pi}{4}$

(d) all of the above are technically correct

March 15, 2019 18 / 30

Recap: Inverse Sine, Cosine, and Tangent

Function	Domain	Range
$\sin^{-1}(x)$	[-1 , 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1}(x)$	[-1,1]	[0 , π]
$\tan^{-1}(x)$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is **typically** defined for all real numbers *x* by

$$y = \cot^{-1}(x) \iff x = \cot(y) \text{ for } 0 < y < \pi.$$

There is less consensus regarding the inverse secant and cosecant functions.

A D A A B A A B A A B A B B

March 15, 2019

A Work-Around

Use the fact that $\sec \theta = \frac{1}{\cos \theta}$ to find an expression for $\sec^{-1}(x)$. Let 0 = Sec'(x), then Sec 0 = x. If x = 0 then $\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$ $G_{50} = \frac{1}{X}$ given $\theta = G_{5}^{-1} \left(\frac{1}{X}\right)$ provided $0 \le \theta \le \pi$ and $x \ne 0$. Use your result to compute (an acceptable value for) $\sec^{-1}(\sqrt{2})$

$$S_{ec}'(Jz) = G_{s}'(\frac{1}{Jz}) = \frac{T}{4}$$

イロト 不得 トイヨト イヨト ヨー ろくの

A Work-Around

We can use the following compromise to compute inverse cotangent, secant, and cosecant values²:

For those values of x for which each side of the equation is defined

$$\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right),$$
$$\csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right),$$
$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right).$$

²Keep in mind that there is disagreement about the ranges! $\langle a a \rangle \langle a a \rangle \langle a a \rangle$

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\sin\left(\sin^{-1}(x)\right) = x$$

For every *x* in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\sin^{-1}\left(\sin(x)\right)=x$

Remark 1: If x > 1 or x < -1, the expression $\sin^{-1}(x)$ is not defined.

A D A A B A A B A A B A B B

March 15, 2019

23/30

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\sin^{-1}(\sin(x))$ IS defined, but IS NOT equal to *x*.

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\cos\left(\cos^{-1}(x)\right) = x$$

For every x in the interval $[0, \pi]$

 $\cos^{-1}(\cos(x)) = x$

Remark 1: If x > 1 or x < -1, the expression $\cos^{-1}(x)$ is not defined.

Remark 2: If $x > \pi$ or x < 0, the expression $\cos^{-1}(\cos(x))$ IS defined, but IS NOT equal to x.

> March 15, 2019

Function/Inverse Function Relationship

For all real numbers x

$$\tan\left(\tan^{-1}(x)\right) = x$$

For every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

 $\tan^{-1}(\tan(x)) = x$

Remark 1:The expression $\tan^{-1}(x)$ is always well defined.

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\tan^{-1}(\tan(x))$ MAY BE defined, but IS NOT equal to x.

> イロト 不得 トイヨト イヨト ヨー ろくの March 15, 2019

Example

Evaluate each expression if possible. If it is not defined, give a reason.

イロト イポト イヨト イヨト

March 15, 2019

(a)
$$\sin\left[\sin^{-1}\left(\frac{1}{2}\right)\right]$$
 $-1 \le \frac{1}{2} \le 1$
= $\frac{1}{2}$

(b) $\cos^{-1}\left[\cos\left(\frac{9\pi}{8}\right)\right]$

March 15, 2019 27 / 30

3

イロト イヨト イヨト イヨト