March 18 Math 2306 sec. 53 Spring 2019

Section 11: Linear Mechanical Equations

We can consider the application of an external driving force (with or without damping). Assume a time dependent force f(t) is applied to the system. The ODE governing displacement becomes

$$m\frac{d^2x}{dt^2}=-\beta\frac{dx}{dt}-kx+f(t), \quad \beta\geq 0.$$

Divide out m and let F(t) = f(t)/m to obtain the nonhomogeneous equation

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = F(t)$$

Forced Undamped Motion and Resonance

Consider the case $F(t) = F_0 \cos(\gamma t)$ or $F(t) = F_0 \sin(\gamma t)$, and $\lambda = 0$. Two cases arise

(1)
$$\gamma \neq \omega$$
, and (2) $\gamma = \omega$.

Taking the sine case, the DE is

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$

with complementary solution

$$x_c = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$

Note that

$$x_c = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

Using the method of undetermined coefficients, the **first guess** to the particular solution is

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$
 Suppose $\gamma = \omega$

Note that

$$x_c = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

Using the method of undetermined coefficients, the **first guess** to the particular solution is

$$x_{p} = A\cos(\gamma t) + B\sin(\gamma t) = A \cos(\omega t) + B\sin(\omega t)$$

$$will this work? No, it deplicates x_{c}.$$

$$x_{p} = At \cos(\omega t) + Bt \sin(\omega t).$$

$$x_{p} = C_{1}\cos(\omega t) + C_{2}\sin(\omega t) + At \cos(\omega t) + Bt \sin(\omega t)$$

Forced Undamped Motion and Resonance

For $F(t) = F_0 \sin(\gamma t)$ starting from rest at equilibrium:

Case (1):
$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$
, $x(0) = 0$, $x'(0) = 0$

$$x(t) = \frac{F_0}{\omega^2 - \gamma^2} \left(\sin(\gamma t) - \frac{\gamma}{\omega} \sin(\omega t) \right)$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance

Case (2):
$$x'' + \omega^2 x = F_0 \sin(\omega t)$$
, $x(0) = 0$, $x'(0) = 0$

$$x(t) = \frac{F_0}{2\omega^2}\sin(\omega t) - \frac{F_0}{2\omega}t\cos(\omega t)$$

Note that the amplitude, α , of the second term is a function of t:

$$\alpha(t) = \frac{F_0 t}{2\omega}$$

which grows without bound!

► Forced Motion and Resonance Applet

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω

Section 12: LRC Series Circuits

Potential Drops Across Components:

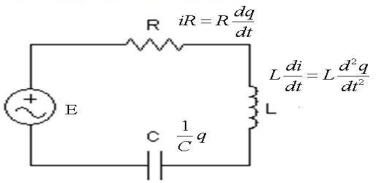


Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $Lq'' + Rq' + \frac{1}{C}q = E(t)$.

This is a second order, linear, constant coefficient nonhomogeneous (if $E \neq 0$) equation.

March 18, 2019

7/43

LRC Series Circuit (Free Electrical Vibrations)

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$$

If the applied force E(t) = 0, then the **electrical vibrations** of the overdamped if $R^2 - 4L/C > 0$, t^2 real roots critically damped if $R^2 - 4L/C = 0$, t^2 represents the contract of t^2 and t^2 represents the critically damped if t^2 and t^2 represents the critically damped if t^2 and t^2 represents the critically damped if t^2 and t^2 real roots are contracted as circuit are said to be free. These are categorized as

$$R^2 - 4L/C > 0$$
, $R^2 - 4L/C = 0$, $R^2 - 4L/C < 0$.

Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with nonhomogeneous ODE for the charge q

$$Lq'' + Rq' + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0.$$

From our basic theory of linear equations we know that the solution will take the form

$$q(t) = q_c(t) + q_p(t).$$

The function of q_c is influenced by the initial state $(q_0 \text{ and } i_0)$ and will decay exponentially as $t \to \infty$. Hence q_c is called the **transient state charge** of the system.

Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with nonhomogeneous ODE for the charge q

$$Lq'' + Rq' + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0.$$

From our basic theory of linear equations we know that the solution will take the form

$$q(t) = q_c(t) + q_p(t).$$

The function q_p is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_p is called the **steady state charge** of the system.

Example

An LRC series circuit has inductance 0.5 h, resistance 10 ohms, and capacitance $4 \cdot 10^{-3}$ f. Find the steady state current of the system if the applied force is $E(t) = 5\cos(10t)$.

We're asked for steady state current. This is
$$\frac{dqp}{dt}$$
, i.e. ip.

The obe is $Lq'' + Rq' + \frac{1}{C}q = E$, where $L^{\frac{1}{2}}$, $R=10$, $C=4.10^3$ so $L=\frac{1}{4.10^3}=\frac{10}{4}=250$

In standard form
$$q'' + 20q' + 800q = 10 Gr(10t)$$
Let's find q_c : $r^2 + 20r + 800 = 0$

$$r^2 + 20r + 100 - 100 + 800 = 0$$

$$(r+10)^2 + 400 = 0$$

$$(r+10)^2 = -400$$

$$r+10 = \pm 20i$$

$$r = -10 \pm 20i$$

$$q_c = c_1 e^{-10t} Gr(20t) + c_2 e^{-10t} Srr(20t)$$

Using undeferred coefficients, $g_P = A Cos(10t) + B Sin(10t)$ This is

-100 A Gs(101)-100BSin(10t) + 20 (-10 A Sin(10t) + 10B Gs(10t))

+ 500 (A Gs(10t) + B Sin(10t)) = 10 Gs(10t)

Collect Cosllot) and Sin(10t)

$$Cos(10t) \left(400A+200B\right) + Sin(10t)\left(-200A+400B\right) =$$

Matching gives 400 A + 200B = 10

$$460A + 200B = 10$$
 $-400A + 800B = 0$
 $1000B = 10 \Rightarrow B = \frac{10}{1000} = \frac{1}{100}$

The skedy state current