March 1 MATH 1112 sec. 54 Spring 2019

Sections 6.1 \& 6.2: Trigonometric Functions of Acute Angles

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opp }}{\text { hyp }}, & \csc \theta=\frac{\text { hyp }}{\text { opp }} \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}, & \sec \theta=\frac{\text { hyp }}{\text { adj }} \\
\tan \theta=\frac{\text { opp }}{\text { adj }}, & \cot \theta=\frac{\text { adj }}{\text { opp }}
\end{array}
$$

Question

Half of an equilateral triangle is a right triangle with angles $30^{\circ}, 60^{\circ}$ and 90°. The ratio of the base to the hypotenuse is $1: 2$. Based on this, which of the following is true?

(a) $\sin 60^{\circ}=\frac{1}{2}$ and $\cos 60^{\circ}=2$
(b) $\sin 60^{\circ}=\frac{1}{2}$ and $\cos 60^{\circ}=\frac{\sqrt{3}}{2}$
(c) $\sin 60^{\circ}=\frac{1}{2}$ and $\cos 60^{\circ}=\frac{1}{2}$
(d) $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ and $\cos 60^{\circ}=\frac{1}{2}$

Some Key Trigonometric Values

Use the triangles to determine the six trigonometric values of the angles $30^{\circ}, 45^{\circ}$, and 60°. Those are $\frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{3}$, respectively.

Figure: An isosceles right triangle of leg length 1 (left), and half of an equilateral triangle of side length 2 (right).

Commit To Memory

It is to our advantage to remember the following:

$$
\begin{array}{lll}
\sin 30^{\circ}=\frac{1}{2}, & \sin 45^{\circ}=\frac{1}{\sqrt{2}}, & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
\cos 30^{\circ}=\frac{\sqrt{3}}{2}, & \cos 45^{\circ}=\frac{1}{\sqrt{2}}, & \cos 60^{\circ}=\frac{1}{2} \\
\tan 30^{\circ}=\frac{1}{\sqrt{3}}, & \tan 45^{\circ}=1, & \tan 60^{\circ}=\sqrt{3}
\end{array}
$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

Commit To Memory

These are the same trigonometric values stated in radians:

$$
\begin{array}{lll}
\sin \frac{\pi}{6}=\frac{1}{2}, & \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, & \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, & \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, & \cos \frac{\pi}{3}=\frac{1}{2} \\
\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}, & \tan \frac{\pi}{4}=1, & \tan \frac{\pi}{3}=\sqrt{3}
\end{array}
$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

Calculator

Figure: Any scientific calculator will have built in functions for sine, cosine and tangent. (TI-84 shown)

Using a Calculator

Evaluate the following using a calculator. Round answers to three decimal places.
$\sin 16^{\circ}=0.276$
$\sec 78.3^{\circ}=\frac{1}{\cos \left(78.3^{\circ}\right)}=4.931$
$\tan \left(\frac{2 \pi}{7}\right)=1.254$

Question

Use a calculator to evaluate $\sec \left(57^{\circ}\right)$ to four decimal places.
(a) 1.1113
(b) 0.5446
(c) 1.8361
(d) This can't be done since the calculator doesn't have a secant button.

Angle of Elevation, Angle of Depression

Figure: An observer may view an object at an angle of elevation or depression with respect to a horizontal vantage point.

Application Example
Before cutting down a dead tree, you wish to determine its height. From a horizontal distance of 40 ft , you measure the angle of elevation from the ground to the top of the tree to be 61°. Determine the tree height to the nearest $100^{\text {th }}$ of a foot.

40 feet

In the diagram $h=$ opp and $40 f t=\operatorname{adj}$ for the 61° angle

$$
\begin{aligned}
\tan 61^{\circ} & =\frac{o p p}{a d j}=\frac{h}{40 \mathrm{ft}} \\
h & =40 \mathrm{ft}\left(\tan 61^{\circ}\right) \approx 72.16 \mathrm{ft}
\end{aligned}
$$

Complementary Angles and Cofunction Identities

The two acute angles in a right triangle are complementary angles.

Figure: Note that for complementary angles θ and ϕ, the role of the legs (opposite versus adjacent) are interchanged.

Cofunction Identities

For any acute angle θ

$$
\begin{array}{ll}
\sin \theta=\cos \left(90^{\circ}-\theta\right) & \cos \theta=\sin \left(90^{\circ}-\theta\right) \\
\tan \theta=\cot \left(90^{\circ}-\theta\right) & \cot \theta=\tan \left(90^{\circ}-\theta\right) \\
\sec \theta=\csc \left(90^{\circ}-\theta\right) & \csc \theta=\sec \left(90^{\circ}-\theta\right)
\end{array}
$$

Stated in radians

$$
\begin{array}{ll}
\sin \theta=\cos \left(\frac{\pi}{2}-\theta\right) & \cos \theta=\sin \left(\frac{\pi}{2}-\theta\right) \\
\tan \theta=\cot \left(\frac{\pi}{2}-\theta\right) & \cot \theta=\tan \left(\frac{\pi}{2}-\theta\right) \\
\sec \theta=\csc \left(\frac{\pi}{2}-\theta\right) & \csc \theta=\sec \left(\frac{\pi}{2}-\theta\right)
\end{array}
$$

These equations define what are called cofunction identities.

Question

Suppose θ is an acute angle such that $\sin \theta=0.334$. Which of the following is true?
(a) $\sin \left(\frac{\pi}{2}-\theta\right)=1-0.334$

$$
\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta
$$

(b) $\cos \left(\frac{\pi}{2}-\theta\right)=0.334$
(c) $\csc \left(\frac{\pi}{2}-\theta\right)=0.334$
(d) $\csc \theta=\frac{1}{1-0.334}$
(e) There's not enough information to determine whether any of the above is true.

