March 1 Math 2306 sec. 53 Spring 2019

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines.
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

Recall that we assumed $y_p = Ax + B$ because this is the basic format for g(x) = 8x + 1. Upon substitution, we found that A = 2 and $B = \frac{9}{4}$ giving

$$y_p=2x+\frac{9}{4}.$$

The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

Here we assumed that $y_p = Ae^{-3x}$ because this is the basic form that $g(x) = 6e^{-3x}$ has. We substituted into the ODE and came up with $A = \frac{6}{25}$ giving

$$y_p = \frac{6}{25}e^{-3x}$$
.

Make the form general

$$y'' - 4y' + 4y = 16x^2$$

Suppose we conside $g(x) = 16x^2$ as a monomial.
Perhaps $y_p = Ax^2$, thus some form. We substitute $y_p' = 2Ax$, $y_p'' = 2A$
 $y_p'' - 4y_p' + 4y_p = 16x^2$
 $y_p'' - 4y_p' + 4y_p = 16x^2$

This requires YA=16, and -8A=0 and 2A=0

This work work since it requires A=4 and A=0.

We need to consider glos = 16x² to be a 2nd degree polynomial. If ye is also a 2nd degree polynomial we can put ye= Ax²+Bx+C

Substitute Sp = 2Ax +B Sp" = 2A

yp" -4yp + 4yp = 16x2

Matching like terms

C= (2

General Form: sines and cosines

$$y''-y'=20\sin(2x)$$

If we assume that $y_p = A \sin(2x)$, taking two derivatives would lead to the equation

$$-4A\sin(2x) - 2A\cos(2x) = 20\sin(2x)$$
.

This would require (matching coefficients of sines and cosines)

$$-4A = 20$$
 and $-2A = 0$.

This is impossible as it would require -5 = 0!

9/34

General Form: sines and cosines

We must think of our equation $y'' - y' = 20 \sin(2x)$ as

$$y'' - y' = 20\sin(2x) + 0\cos(2x).$$

The correct format for y_p is

$$y_p = A\sin(2x) + B\cos(2x).$$

(a) g(x) = 1 (or really any constant)

A

Zero degree polynomial $y_p = A$

(b)
$$g(x) = x - 7$$
 1st depen polynomial

(c)
$$g(x) = 5x^2$$
 and Leger polynomial $y_p = A x^2 + B x + C$

(d)
$$g(x) = 3x^3 - 5$$
 3rd degree polynomial
$$y_p = Ax^3 + Bx^2 + Cx + D$$

February 27, 2019 12 / 34

(e)
$$g(x) = xe^{3x}$$
 1st degree physical times e^{3x}

$$y_p = (Ax + B) e^{3x} = Ax e^{3x} + B e^{3x}$$

(f)
$$g(x) = \cos(7x)$$
 Linear Combo of Sine and Casine $f(x)$

$$y_p = A \cos(7x) + B \sin(7x)$$

February 27, 2019 13 / 34

(g)
$$g(x) = \sin(2x) - \cos(4x)$$

$$y_{\rho} = A S_{i, \gamma}(2x) + B(os(2x) + C cos(4x) + D Sin(4x))$$

(h)
$$g(x) = x^2 \sin(3x)$$
 deput polythere Sine or larine $\frac{3}{x}$

February 27, 2019 14 / 34

(i)
$$g(x) = e^x \cos(2x)$$

 $y_p = A_e^x \cos(z_x) + B_e^x \sin(z_x)$

$$(j) g(x) = xe^{-x} \sin(\pi x)$$