March 1 Math 2306 sec. 54 Spring 2019

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines.
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

Recall that we assumed $y_p = Ax + B$ because this is the basic format for g(x) = 8x + 1. Upon substitution, we found that A = 2 and $B = \frac{9}{4}$ giving

$$y_p=2x+\frac{9}{4}.$$

The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

Here we assumed that $y_p = Ae^{-3x}$ because this is the basic form that $g(x) = 6e^{-3x}$ has. We substituted into the ODE and came up with $A = \frac{6}{25}$ giving

$$y_p = \frac{6}{25}e^{-3x}$$
.

Make the form general

Suppose we consider
$$g(x) = 16x^2$$
 as a monomial, we now assume that $y_p = Ax^2$, Substitute

 $y_p' = 2A \times y_p'' = 2A$
 $y_p'' = 4y_p' + 4y_p = 16x^2$
 $2A - 4(2Ax) + 4(Ax^2) = 16x^2$
 $4Ax^2 - 8Ax + 2A = 16x^2 + 0x + 0$

Matching gives 4A=16, and -8A=0, 2A=0

This requires A=4 and A=0 which is impossible

We need to consider $g(x) = 16x^2$ as a 2^{nd} degree polynomial. Let $y_p = Ax^2 + Bx + C$

$$\frac{4A \times^{2} + (-8A + B) \times + (2A - 4B + 4C) = 16 \times^{2} + 0 \times + 0}{=}$$

Matching sives

$$4A=16 \Rightarrow A=4$$

 $-8A+48=0 \Rightarrow B=\frac{8}{4}A=2A=2.4=8$
 $2A-48+4(=0 \Rightarrow C=\frac{1}{4}(-2A+4B)=\frac{1}{4}(-8+32)$
 $=6$

General Form: sines and cosines

$$y''-y'=20\sin(2x)$$

If we assume that $y_p = A \sin(2x)$, taking two derivatives would lead to the equation

$$-4A\sin(2x) - 2A\cos(2x) = 20\sin(2x)$$
.

This would require (matching coefficients of sines and cosines)

$$-4A = 20$$
 and $-2A = 0$.

This is impossible as it would require -5 = 0!

9/34

General Form: sines and cosines

We must think of our equation $y'' - y' = 20 \sin(2x)$ as

$$y'' - y' = 20\sin(2x) + 0\cos(2x).$$

The correct format for y_p is

$$y_p = A\sin(2x) + B\cos(2x).$$

(a)
$$g(x) = 1$$
 (or really any constant)

200 dique polynomial

 $y_p = A$

(b)
$$g(x) = x - 7$$
 | C^* degu polynomial

(c)
$$g(x) = 5x^2$$
 2^{Nd} deger polynomial $y_{\Gamma} = A_{X^2} + B_{X^2} + C$

(d)
$$g(x) = 3x^3 - 5$$
 3¹² degree polynomial

February 27, 2019 12 / 34

(e)
$$g(x) = xe^{3x}$$
 | s^{+} deque polynomial times e^{3x}

$$y_{p} = (Ax + B)e^{3x} = Ax e^{3x} + Be^{3x}$$

(f)
$$g(x) = \cos(7x)$$
 Linear combo of sine and Cosine of $7x$

February 27, 2019 13 / 34

(g)
$$g(x) = \sin(2x) - \cos(4x)$$

$$y_0 = A Sin(2x) + B Gin(2x) + C Gin(4x) + D Sin(4x)$$

(h)
$$g(x) = x^2 \sin(3x)$$
 θ^{nd} degree poly times sines and cosines of $3x$

(i)
$$g(x) = e^x \cos(2x)$$

 $y_p = A e^x \cos(2x) + B e^x \sin(2x)$

(j)
$$g(x) = xe^{-x} \sin(\pi x)$$

$$y_0 = (A \times + B) e^{-x} Sin(\pi x) + (Cx + D) e^{-x} Cos(\pi x)$$

February 27, 2019 15 / 34