March 22 Math 2306 sec. 54 Spring 2019

Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables (s and t) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say t,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable s, and
- the variable s is treated as a constant while integrating with respect to t.

Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t .
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.
Note 2: If we take s to be real-valued, then

$$
\lim _{t \rightarrow \infty} e^{-s t}=0 \quad \text { if } s>0, \text { and } \quad \lim _{t \rightarrow \infty} e^{-s t}=\infty \quad \text { if } s<0
$$

Find the Laplace transform of $f(t)=1$
By definition $\mathcal{Z}\{\mid\}=\int_{0}^{\infty} e^{-s t} \cdot \mid d t=\int_{0}^{\infty} e^{-s t} d t$
we consider cases $s=0$ and $s \neq 0$.
when $s=0$, the integral is

$$
\begin{aligned}
& s=0 \text {, the integid is } \\
& \int_{0}^{\infty} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} d t=\left.\lim _{b \rightarrow \infty} t\right|_{0} ^{b}=\lim _{b \rightarrow \infty}(b-0)=\infty \\
& \text { divergent }
\end{aligned}
$$

divergent
Zero is not in the domain of $\mathcal{Z}\{1\}$.
For $s \neq 0$

$$
y\{1\}=\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t
$$

$$
\begin{aligned}
& =\left.\lim _{b \rightarrow \infty} \frac{-1}{s} e^{-s t}\right|_{0} ^{b}=\lim _{b \rightarrow \infty} \frac{-1}{s}\left(e^{-s b}-e^{0}\right) \\
& =\frac{-1}{s}(0-1) \text { if } \quad s>0 \\
& \quad \text { it's divergent if } s<0
\end{aligned}
$$

So

$$
\mathcal{L}\{1\}=\frac{1}{S} \quad \text { for } \quad s>0
$$

Find the Laplace transform of $f(t)=t$
By definition $\mathcal{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
For $s=0$, we hove

$$
\int_{0}^{\infty} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{\infty}=\infty \quad \text { divergent }
$$

For $s \neq 0$
Int by parts

$$
\begin{aligned}
\mathcal{L}\{t\} & =\int_{0}^{\infty} e^{-5 t} t d t \\
& =\left.\frac{-1}{5} e^{-5 t} t\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{-1}{5} e^{-5 t} d t
\end{aligned}
$$

$$
u=t \quad d u=d t
$$

$$
v=\frac{-1}{s} e^{-s t} d v=e^{-s t} d t
$$

$$
\begin{aligned}
& =\frac{-1}{s}(0-0)+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \quad \begin{array}{l}
\text { for } s>0 \\
\text { It divange if } s<0 \\
=\frac{1}{s} \underbrace{\int_{0}^{\infty} e^{-s t} d t}_{\mathcal{L}^{(}\{1\}} \\
=\frac{1}{s}\left(\frac{1}{s}\right) \quad \mathcal{L}\{t\}=\frac{1}{s^{2}}, \quad s>0
\end{array}
\end{aligned}
$$

A piecewise defined function Find the Laplace transform of f defined by

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{ll}
2 t, & 0 \leq t<10 \\
0, & t \geq 10
\end{array} \quad \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t\right. \\
& \mathcal{L}\{f(t)\}=\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t}(0) d t
\end{aligned}
$$

For $s=0$

$$
\int_{0}^{10} 2 t d t=\left.t^{2}\right|_{0} ^{10}=100
$$

For $s \neq 0$

$$
\int_{0}^{10} e^{-s t}(2 t) d t
$$

$$
\begin{aligned}
& =\left.\frac{-2}{s} e^{-s t} t\right|_{0} ^{10}-\left.\frac{2}{s^{2}} e^{-s t}\right|_{0} ^{10} \\
& =\frac{2}{s}\left(10 e^{-10 s}-0\right)-\frac{2}{s^{2}}\left(e^{-10 s}-e^{0}\right) \\
& =-\frac{20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}+\frac{2}{s^{2}} \\
& \mathcal{L}\{f(t)\}=\left\{\begin{array}{l}
100, s=0 \\
\frac{2}{s^{2}}-\frac{20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}, s \neq 0
\end{array}\right.
\end{aligned}
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

