March 25 Math 2306 sec. 53 Spring 2019

Section 13: The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Examples: Evaluate the Loplace trans form of
(a) $f(t)=\cos (\pi t)$

$$
\mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}
$$

$$
\mathcal{L}\{\cos (\pi t)\}=\frac{s}{s^{2}+\pi^{2}}
$$

Examples: Evaluate
(b) $f(t)=2 t^{4}-e^{-5 t}+3$

$$
\begin{gathered}
y\{1\}=\frac{1}{s}, \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \\
\mathcal{Z}\left\{e^{a+\}}\right\}=\frac{1}{s-a}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{L}\left\{2 t^{4}-e^{-5 t}+3\right\}=2 \mathcal{L}\left\{t^{4}\right\}-\mathcal{L}\left\{e^{-5 t}\right\}+3 \mathcal{L}\{1\} \\
=2\left(\frac{4!}{s^{4+1}}\right)-\frac{1}{s-(-5)}+3\left(\frac{1}{s}\right) \\
=\frac{48}{s^{5}}-\frac{1}{s+5}+\frac{3}{s}
\end{gathered}
$$

Examples: Evaluate

$$
\mathcal{L}\{1\}=\frac{1}{s}, \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

(c) $f(t)=(2-t)^{2}$

Distribute first

$$
\begin{aligned}
& f(t)=4-4 t+t^{2} \\
& \begin{aligned}
& \mathcal{Y}\{f(t)\}=\mathcal{L}\left\{4-4 t+t^{2}\right\}=4 \mathcal{L}\{1\}-4 \mathcal{L}\{t\}+\mathcal{L}\left\{t^{2}\right\} \\
&=4\left(\frac{1}{s}\right)-4\left(\frac{1!}{s^{1+1}}\right)+\frac{2!}{s^{2+1}} \\
&=\frac{4}{5}-\frac{4}{s^{2}}+\frac{2}{s^{3}}
\end{aligned}
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

$$
\text { f grows no faster than an exponential as } t \rightarrow \infty
$$

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \quad \Longrightarrow \quad|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta \boldsymbol{g}(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.
(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$ well use

Note that $\frac{1}{S^{7}}=\frac{1}{6!} \frac{6!}{s^{7}}$

$$
\begin{aligned}
& \text { use } \\
& \mathcal{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n} \\
& \mathcal{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=t^{6}
\end{aligned}
$$

so

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{6!} \frac{6!}{s^{7}}\right\}=\frac{1}{6!} \mathcal{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{6!} t^{6}
$$

Example: Evaluate
(b)

$$
\begin{aligned}
\mathscr{L}^{-1} & \left\{\frac{s+1}{s^{2}+9}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+3^{2}}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\}
\end{aligned}
$$

$$
=\cos (3 t)+\frac{1}{3} \sin (3 t)
$$

Example: Evaluate
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$
weill do a pantice fruetion deconp on $\frac{s-8}{\delta^{2}-2 s}$

$$
\begin{aligned}
& \frac{s-8}{s^{2}-2 s}=\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{A}{s-2} \\
& s-8=A(s-2)+B s \\
& \text { set } s=0 \quad-8=-2 A \Rightarrow A=4 \\
& s=2 \quad-6=2 B \Rightarrow B=-3
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4(1)-3\left(e^{2 t}\right) \\
& =4-3 e^{2 t}
\end{aligned}
$$

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?
By definition $\mathscr{L}\left\{e^{t} t^{2}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t$

$$
\begin{aligned}
& e^{-s t} \cdot e^{t} \\
& =e^{-s t+t}
\end{aligned}
$$

$$
=\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t
$$

$=e^{-(s-1) t}$

$$
=\int_{0}^{\infty} e^{-w t} t^{2} d t \text { where } w=s-1
$$

By properties
of exponents of exp one
Observe that this is simply the Laplace transform of $f(t)=t^{2}$ evaluated at $s-1$. Letting $F(s)=\mathscr{L}\left\{t^{2}\right\}$, we have

$$
F(s-1)=\frac{2}{(s-1)^{3}}
$$

Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t t^{n}}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

