March 27 MATH 1112 sec. 54 Spring 2019

Section 7.1: Fundamental Identities: Pythagorean, Sum, and Difference

We have three new identities added to our list. The Pythagorean IDs are

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \tan ^{2} x+1=\sec ^{2} x
\end{aligned}
$$

and

$$
1+\cot ^{2} x=\csc ^{2} x
$$

Next, we'd like a way to evaluate trigonometric values of sums and differences of angles. For example, what is

$$
\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right) ?
$$

Sum and Difference Identities

Given two angles u and v, we wish to find a formula for $\cos (u-v)$.

Figure: We construct the angle $u-v$ in a unit circle in two ways and equate the resulting chord lengths.

Derive the formula for $\cos (u-v)$

$$
\begin{aligned}
& P=(\cos v, \sin v) \quad Q=(\cos u, \sin u) \\
& R=(\cos (u-v), \sin (u-v)) \quad \text { Let } \quad S=(1,0)
\end{aligned}
$$

Note $|P Q|=|R S|$ (chord lengths)
well use $|P Q|^{2}=|R S|^{2}$

$$
\begin{aligned}
&|P Q|^{2}=(\cos u-\cos v)^{2}+(\sin u-\sin v)^{2} \\
&=\cos ^{2} u-2 \cos u \cos ^{2} v+\cos ^{2} v+\sin ^{2} u-2 \sin u \sin v+\sin ^{2} v \\
&=\left(\cos ^{2} u+\sin ^{2} u\right)+\left(\cos ^{2} v+\sin ^{2} v\right)-2\left(\cos w \cos v+\sin ^{\sin } u \sin v\right) \\
& 3 / 42
\end{aligned}
$$

Derive the formula for $\cos (u-v)$

$$
|P Q|^{2}=2-2(\cos u \cos v+\sin u \sin v)
$$

$$
\begin{aligned}
\text { Next, } \\
\begin{aligned}
\mathbb{R} s)^{2} & =(\cos (u-v)-1)^{2}+(\sin (u-v)-0)^{2} \\
& =\cos ^{2}(u-v)-2 \cos (u-v)+1+\sin ^{2}(u-v) \\
& =\left(\cos ^{2}(u-v)+\sin ^{2}(n-v)\right)+1-2 \cos (u-v) \\
& =2-2 \cos (u-v)
\end{aligned}
\end{aligned}
$$

Now set $|P Q|^{2}=|R S|^{2}$

Derive the formula for $\cos (u-v)$

$$
\begin{array}{r}
2-2(\cos u \cos v+\sin u \sin v)=2-2 \cos (u-v) \\
2 \cos (u-v)=2(\cos u \cos v+\sin u \sin v) \\
\cos (u-v)=\cos u \cos v+\sin u \sin v
\end{array}
$$

Question

We know that $\cos (u-v)=\cos u \cos v+\sin u \sin v$. Use the fact that

$$
\cos (u+v)=\cos (u-(-v))=\cos u \cos (-v)+\sin u \sin (-v)
$$

and the even/odd symmetry of the sine and cosine to deduce the sum of angles formula for the cosine. The result is

$$
\cos (u+v)=
$$

(a) $\cos u \sin v+\sin u \cos v$
(b) $\cos u+\cos v$
(c) $\cos u \cos v-\sin u \sin v$

$$
\begin{aligned}
& \cos (-v)=\cos v \\
& \sin (-v)=-\sin v
\end{aligned}
$$

(d) $\cos u+\sin v$

Sum and Difference Identities

Cosine Identities:

(sum) $\cos (u+v)=\cos u \cos v-\sin u \sin v$,
(diff) $\quad \cos (u-v)=\cos u \cos v+\sin u \sin v$

Sine Identities:

(sum) $\sin (u+v)=\sin u \cos v+\sin v \cos u$
(diff) $\sin (u-v)=\sin u \cos v-\sin v \cos u$

Tangent Identities:
(sum) $\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v}$,
(diff) $\tan (u-v)=\frac{\tan u-\tan v}{1+\tan u \tan v}$

Determine the Exact Value of Each Expression

$$
\begin{aligned}
& \cos \left(15^{\circ}\right) \quad \text { we can use } 15^{\circ}=45^{\circ}-30^{\circ} \\
& =\cos \left(45^{\circ}-30^{\circ}\right)=\cos \left(45^{\circ}\right) \cos \left(30^{\circ}\right)+\sin \left(45^{\circ}\right) \sin \left(30^{\circ}\right) \\
& = \\
& \frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

Question

The expression $\sin \left(27^{\circ}\right) \cos \left(10^{\circ}\right)-\sin \left(10^{\circ}\right) \cos \left(27^{\circ}\right)$ is equivalent to
(a) $\sin \left(37^{\circ}\right)$
(b) $\cos \left(37^{\circ}\right)$
(c) $\sin \left(17^{\circ}\right)$
(d) $\cos \left(17^{\circ}\right)$

Evaluate each expression using the given information.
Given: $\tan \alpha=-2, \quad \frac{\pi}{2}<\alpha<\pi \quad$ quad II and $\sec \beta=\frac{4}{3}, \quad \frac{3 \pi}{2}<\beta<2 \pi \quad$ quad $\underline{\text { IV }}$
$\tan (\alpha+\beta)$ weill use representative diagrons

$$
\begin{array}{rlrl}
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} & \tan \alpha=-2 \\
\tan \beta=\frac{-\sqrt{7}}{3} \\
& =\frac{-2+\left(\frac{-\sqrt{7}}{3}\right)}{1-(-2)\left(\frac{-\sqrt{7}}{3}\right)}\left(\frac{3}{3}\right) & \text { clear the } \\
\text { fractions }
\end{array}
$$

Section 7.2: Double \& Half Angle IDs
Use $\sin (u+v)=\sin u \cos v+\sin v \cos u$ to obtain a formula for

$$
\begin{aligned}
\sin (2 u) & =\sin (u+u) \\
& =\sin u \cos u+\sin u \cos u \\
& =2 \sin u \cos u
\end{aligned}
$$

Double Angle Formulas for the Cosine
Use $\cos (u+v)=\cos u \cos v-\sin u \sin v$ and $\cos ^{2} u+\sin ^{2} u=1$ to find three formulas for

$$
\begin{aligned}
\cos (2 u)=\cos (u+u) & =\cos u \cos u-\sin u \sin u \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
\text { Using } \sin ^{2} u & =1-\cos ^{2} u \\
\cos (2 u) & =\cos ^{2} u-\left(1-\cos ^{2} u\right) \\
& =\cos ^{2} u-1+\cos ^{2} u \\
& =2 \cos ^{2} u-1
\end{aligned}
$$

using $\cos ^{2} u=1-\sin ^{2} u$

$$
\begin{aligned}
\cos (2 u) & =\left(1-\sin ^{2} u\right)-\sin ^{2} u \\
& =1-\sin ^{2} u-\sin ^{2} u \\
& =1-2 \sin ^{2} u
\end{aligned}
$$

Question: Double Angle Formulas for the Tangent

From the sum formula $\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v}$, it follows that $\tan (2 u)=$
(a) $\frac{2 \tan u}{1-2 \tan u}$
(b) $\frac{2 \tan u}{1-\tan ^{2} u}$
(c) $\frac{\tan ^{2} u}{1-2 \tan u}$
(d) $\frac{\tan ^{2} u}{1-\tan ^{2} u}$

Double Angle Formulas

$$
\sin (2 u)=2 \sin u \cos u
$$

$$
\begin{aligned}
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u
\end{aligned}
$$

$$
\tan (2 u)=\frac{2 \tan u}{1-\tan ^{2} u}
$$

