March 29 MATH 1112 sec. 54 Spring 2019

Section 7.1: Fundamental Identities: Pythagorean, Sum, and Difference

We have three new identities added to our list. The Pythagorean IDs are

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \tan ^{2} x+1=\sec ^{2} x
\end{aligned}
$$

and

$$
1+\cot ^{2} x=\csc ^{2} x
$$

We also added the sum and difference of angles identities.

Sum and Difference Identities

Cosine Identities:

(sum) $\cos (u+v)=\cos u \cos v-\sin u \sin v$,
(diff) $\cos (u-v)=\cos u \cos v+\sin u \sin v$

Sine Identities:

(sum) $\quad \sin (u+v)=\sin u \cos v+\sin v \cos u$
(diff) $\quad \sin (u-v)=\sin u \cos v-\sin v \cos u$

Tangent Identities:
(sum) $\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v}$,
(diff) $\tan (u-v)=\frac{\tan u-\tan v}{1+\tan u \tan v}$

Section 7.2: Double \& Half Angle IDs

Next we derived the double angle identities:

$$
\begin{aligned}
\sin (2 u) & =2 \sin u \cos u \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u \\
\tan (2 u) & =\frac{2 \tan u}{1-\tan ^{2} u}
\end{aligned}
$$

Example

Suppose $\sec (x)=5$ and $\cot (x)<0$. Find the exact value of $\csc (2 x)=\frac{1}{\sin (2 x)} \quad \sin (2 x)=2 \sin x \cos x$
wore $\sec x=\frac{1}{\cos x}$ so $\cos x=\frac{1}{\sec x}=\frac{1}{5}$
we st. ll need $\sin x$.
$\sec x>0$ and $\cot x<0$
quad Io VV quod II or IV
x is in quadrant $\mid V$ in standard pos.

March 27, $2019 \quad 4 / 32$

$$
\sec x=5=\frac{h_{y p}}{a d j}
$$

$$
b^{2}=5^{2}-1^{2}=24
$$

From the diagram $\sin x=\frac{-\sqrt{24}}{5}$

$$
\begin{aligned}
\csc (2 x) & =\frac{1}{\sin (2 x)}=\frac{1}{2 \sin x \cos x}=\frac{1}{2\left(\frac{-\sqrt{24}}{5}\right)\left(\frac{1}{5}\right)} \\
& =\frac{1}{\frac{-2 \sqrt{24}}{25}}=\frac{-25}{2 \sqrt{24}}
\end{aligned}
$$

Half Angle IDs
Use the fact that $\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ and that $\frac{\pi}{4}=2 \frac{\pi}{8}$ to find the exact value of $\sin ^{2}\left(\frac{\pi}{8}\right)$ well relate $\cos \left(2 \cdot \frac{\pi}{8}\right)=\cos \left(\frac{\pi}{4}\right)$ to the $\sin \left(\frac{\pi}{8}\right)$. One forme for $\cos (2 u)$ is

$$
\cos (2 u)=1-2 \sin ^{2} u
$$

Weill take $u=\frac{\pi}{3}$. Isolate $\sin ^{2} u$

$$
2 \sin ^{2} u=1-\cos (2 u)
$$

$$
\sin ^{2} u=\frac{1-\cos (2 u)}{2}
$$

Set $n=\frac{\pi}{8}$

$$
\begin{aligned}
\sin ^{2}\left(\frac{\pi}{3}\right) & =\frac{1-\cos \left(\frac{\pi}{4}\right)}{2} \\
& =\frac{1-\frac{1}{\sqrt{2}}}{2} \cdot\left(\frac{\sqrt{2}}{\sqrt{2}}\right) \\
& =\frac{\sqrt{2}-1}{2 \sqrt{2}}
\end{aligned}
$$

Half Angle IDs

$$
\begin{aligned}
& \sin ^{2} x=\frac{1-\cos (2 x)}{2} \quad \sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos x}{2}} \\
& \cos ^{2} x=\frac{1+\cos (2 x)}{2} \\
& \cos \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1+\cos x}{2}} \\
& \tan ^{2} x=\frac{1-\cos (2 x)}{1+\cos (2 x)} \\
& \tan \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos (x)}{1+\cos (x)}}
\end{aligned}
$$

For a given value of x, only one of the signs + or - will apply. To choose the correct sign, determine which quadrant the angle $\frac{x}{2}$ is in when in standard position.

Determine the exact value of
(a) $\cos \left(22.5^{\circ}\right)$

$$
\begin{aligned}
& 22.5^{\circ}=\frac{45^{\circ}}{2} \\
& \text { well use } \cos \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1+\cos x}{2}}
\end{aligned}
$$

22.5° is acute so $\cos \left(22.5^{\circ}\right)>0$ (plus sign)

$$
\begin{aligned}
\cos \left(22.5^{\circ}\right) & =\sqrt{\frac{1+\cos \left(45^{\circ}\right)}{2}}=\sqrt{\frac{1+\frac{1}{\sqrt{2}}}{2}} \\
& =\sqrt{\left(\frac{1+\frac{1}{\sqrt{2}}}{2}\right) \frac{\sqrt{2}}{\sqrt{2}}}=\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}
\end{aligned}
$$

Question

In standard position, the angle $\frac{13 \pi}{12}$ would have its terminal side in
(a) Quadrant $1 \quad \frac{13 \pi}{12}=\frac{12 \pi}{12}+\frac{\pi}{12}$
(b) Quadrant 2
π
(c) Quadrant 3
(d) Quadrant 4
(e) $\frac{13 \pi}{12}$ isn't a number, Dr. Ritter made it up

Question

The angle $\frac{13 \pi}{6}$ is coterminal with
(ㅈ) $\frac{\pi}{6}$

$$
\frac{13 \pi}{6}=2 \pi+\frac{\pi}{6}
$$

(b) $\frac{5 \pi}{6}$
(c) $\frac{7 \pi}{6}$
(d) $\frac{11 \pi}{6}$
(e) $\frac{13 \pi}{6}$ isn't a number, Dr. Ritter made it up

Question

$$
\sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos x}{2}}
$$

The exact value of $\sin \left(\frac{13 \pi}{12}\right)=$
(a) $\frac{1}{4}$
(b) $-\frac{\sqrt{3}}{4}$
(c) $-\frac{\sqrt{2-\sqrt{3}}}{2}$
(d) $\frac{\sqrt{2-\sqrt{3}}}{2}$

