March 4 Math 2306 sec. 54 Spring 2019

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

By supuposition, we can write $y_{p}=y_{p_{1}}+y_{p_{2}}$ where
api solves $y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}$ and
$y_{p_{2}}$ solves $\quad y^{\prime \prime}-4 y^{\prime}+4 y=16 x_{\pi}^{g_{g}} g_{2}(x)$
From $g_{1}(x)=6 e^{-3 x}$, we set

$$
y_{p_{1}}=A e^{-3 x}
$$

From $g_{2}(x)=16 x^{2}$, we set

$$
y_{p_{2}}=B x^{2}+C x+D
$$

Then $y_{p}=A e^{-3 x}+B x^{2}+C x+D$

A Glitch!

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

Here, $g(x)=3 e^{x}$. Wed sat $y_{p}=A e^{x}$. Substitute

$$
\begin{aligned}
y_{p}^{\prime}=A e^{x}, \quad y_{p}^{\prime \prime} & =A e^{x} \\
y_{p}^{\prime \prime}-y_{p}^{\prime} & =3 e^{x} \\
A e^{x}-A e^{x} & =3 e^{x} \\
O A e^{x} & =3 e^{x}
\end{aligned}
$$

$O A=3$ Cant be solved, the ne is no solution A.
we need to consider y_{c} whid solves $y^{\prime \prime}-y^{\prime}=0$
Characteristic equation $m^{2}-m=0$

$$
\begin{gathered}
m(m-1)=0 \Rightarrow m_{1}=0, m_{2}=1 \\
y_{1}=e^{0 x}=1 \text { and } y_{2}=e^{1 x}=e^{x} \\
y_{c}=c_{1}+c_{2} e^{x}
\end{gathered}
$$

Our guess $y_{p}=A e^{x}$ solves the homogeneous equation (matches part of y_{c}). Theses no way to match to the $g(x)=3 e^{x}$.

We'll consider cases

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

we need $y=y_{c}+y_{p}$. Find y_{c} first. y_{c} solves $y^{\prime \prime}-2 y^{\prime}+y=0 \quad$ cheradurstic equation

$$
\begin{aligned}
& m^{2}-2 m+1=0 \\
& (m-1)^{2}=0 \\
& m=1 \text { repeated }
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=e^{x}, y_{2}=x e^{x} \\
& y_{2}=c_{1} e^{x}+c_{2} x e^{x}
\end{aligned}
$$

Find $y_{p}: \quad g(x)=-4 e^{x}$. Guess at the torn of y_{p} $1^{s t}$ try $\quad y_{p}=A e^{x} \quad$ Duplicates $c e^{x}$, wont work $2^{n d} t_{y} \quad y_{p}=A x e^{x}$ Duplicates $c_{2} x e^{x}$, wont work $3^{r d} t_{y} \quad y_{p}=A x^{2} e^{x} \quad$ this is the correct form Substitute $\quad y_{p}^{\prime}=A x^{2} e^{x}+2 A x e^{x}$

$$
\begin{aligned}
y_{p}^{\prime \prime} & =A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
& =A x^{2} e^{x}+4 A x e^{x}+2 A e^{x} \\
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p} & =-4 e^{x}
\end{aligned}
$$

$$
A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
$$

Collect like terms $\left(x^{2} e^{x}, x e^{x}, e^{x}\right)$

$$
\begin{aligned}
& x^{2} e^{x} \frac{(A-2 A+A)}{0_{0}^{\prime \prime}}+x e^{x} \frac{(4 A-4 A)}{0_{0}^{\prime \prime}}+e^{x}(2 A)=-4 e^{x} \\
& 2 A e^{x}=-4 e^{x} \\
& 2 A=-4 \\
& A=-2
\end{aligned}
$$

So $\quad y_{p}=-2 x^{2} e^{x}$
The general solution $y_{c}+y_{p}$ is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular solution

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

we need y_{c} first. y_{c} solves $y^{\prime \prime}-4 y^{\prime}+4 y=0$

$$
\begin{aligned}
& m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0 \quad m=2 \text { repeated } \\
& y_{1}=e^{2 x}, y_{2}=x e^{2 x} \quad y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{aligned}
$$

Let $g_{1}(x)=\sin (4 x) \quad, \quad g_{2}(x)=x e^{2 x}$
$y_{p_{1}}$ solus $y_{p_{1}}^{\prime \prime}-4 y_{p_{1}}^{\prime}+4 y_{p_{1}}=\sin (4 x)$

$$
y_{p}=A \sin (4 x)+B \cos (4 x)
$$

\checkmark works

$$
\begin{aligned}
& y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x} \\
& g_{2}(x)=x e^{2 x} \\
& 1_{\text {attempt }}^{\text {st }} \quad y_{p_{2}}=(C x+D) e^{2 x}=C_{x} e^{2 x}+D e^{2 x} \text { rope! } \\
& 2^{\text {nd }} \quad y_{p_{2}}=(C x+D) x e^{2 x}=C x^{2} e^{2 x}+p_{x} e^{2 x} \text { rope! } \\
& 2^{\text {rd }} \quad y_{p_{2}}=(C x+D) x^{2} e^{2 x}=C x^{3} e^{2 x}+D x^{2} e^{2 x}
\end{aligned}
$$

Then $y_{p}=y_{A}+y_{p_{2}}$

$$
\begin{aligned}
& y_{p}=y_{A}+y_{p 2} \\
& y_{p}=A \sin \left(u_{x}\right)+B \cos \left(u_{x}\right)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
\end{aligned}
$$

