March 6 MATH 1112 sec. 54 Spring 2019

Section 6.3 Trigonometric Functions of any Angle

If θ is any angle in standard position, and (x, y) is any point on its terminal side (other than the origin) at a distance of $r = \sqrt{x^2 + y^2}$ from the origin, then the trigonometric values of θ are defined by

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}$$
$$\cos \theta = \frac{x}{r} \qquad \qquad \sec \theta = \frac{r}{x}$$
$$\tan \theta = \frac{y}{x} \qquad \qquad \cot \theta = \frac{x}{y}$$

March 4, 2019 1 / 46

Quadrants & Signs of Trig Values

March 4, 2019 2 / 46

Example

Determine which quadrant the terminal side of θ must be in if

 $\sin \theta > 0$ and $\tan \theta < 0$ (a) Sind >0 => O is in I or I ten 0 < 0 ⇒ 0 is in II or II O nust be quadrant II (b) $\sec \theta < 0$ and $\cot \theta > 0$ Seco < 0 => O is in II or III Coto > O is in I or I O must be in guadrant II

March 4, 2019 3 / 46

Question

Suppose that θ is a positive angle whose measure is less than 360°, $\sin \theta = -0.3420$, and $\cos \theta = -0.9397$. Which of the following must be true about θ ?

(a)
$$0^{\circ} < \theta < 90^{\circ}$$
Sin $0 < D$ and $Cor $0 < D$ (b) $90^{\circ} < \theta < 180^{\circ}$ Size in podrat III(c) $180^{\circ} < \theta < 270^{\circ}$ (in standard position)$

(d) $270^{\circ} < \theta < 360^{\circ}$

(e) any of the above may be true, more information is needed to determine which is true

March 4, 2019

4/46

Reference Angles

Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (x, y), and by symmetry the terminal side of θ passes through the point (-x, y) (same *y* and opposite sign *x*).

Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

Reference Angles

Definition: Let θ be an angle in standard position. The **reference angle** θ' associated with θ is the angle of measure $0^{\circ} < \theta' < 90^{\circ}$ between the terminal side of θ and the *nearest* part of the *x*-axis.

that is a quadrantal

< ロ > < 同 > < 回 > < 回 >

Example (a) Determine the reference angle.

Example (b) Determine the reference angle.

Question

The reference angle for 300 $^{\circ}$ is

(a) -60°

(c) -30°

(d) 30°

0 = 360 - 300

Theorem on Reference Angles

Theorem: If θ' is the reference angle for the angle θ , then

$$\sin \theta' = |\sin \theta|, \quad \cos \theta' = |\cos \theta| \quad \& \quad \tan \theta' = |\tan \theta|.$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

Remark 2: This means that the trigonometric values for θ can differ at most by a sign (+ or -) from the values for θ' .

March 4, 2019

10/46

Example: Using Reference Angles Find the exact value of 0= 135 sin(135°) (a) | 0'= 180° - 135° = 45° $Sin(135^{\circ}) = Sin(45^{\circ})$ or $Sin(135^{\circ}) = -Sin(45^{\circ})$ $S_{in}(4S^{\circ}) = \frac{\sqrt{2}}{2}$ $S_{in} \Theta > 0$ in gued II $Sin(135^\circ) = \frac{\overline{12}}{2}$ 50 March 4, 2019 11/46