## March 6 MATH 1112 sec. 54 Spring 2019

## Section 6.3 Trigonometric Functions of any Angle

If $\theta$ is any angle in standard position, and $(x, y)$ is any point on its terminal side (other than the origin) at a distance of $r=\sqrt{x^{2}+y^{2}}$ from the origin, then the trigonometric values of $\theta$ are defined by

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

## Quadrants \& Signs of Trig Values



## Example

Determine which quadrant the terminal side of $\theta$ must be in if
(a) $\sin \theta>0$ and $\tan \theta<0$

$$
\begin{array}{r}
\sin \theta>0 \Rightarrow \theta \text { is in I or II } \\
\operatorname{ten} \theta<0 \Rightarrow \theta \text { is in II or IV } \\
\theta \text { rust be quadrant II }
\end{array}
$$

(b) $\sec \theta<0$ and $\cot \theta>0$

$$
\begin{array}{r}
\sec \theta<0 \Rightarrow \theta \text { is in II or III } \\
\cot \theta>0 \Rightarrow \theta \text { is in I or III } \\
\theta \text { must be in quadrant III }
\end{array}
$$

## Question

Suppose that $\theta$ is a positive angle whose measure is less than $360^{\circ}$, $\sin \theta=-0.3420$, and $\cos \theta=-0.9397$. Which of the following must be true about $\theta$ ?

```
\[
\text { (a) } 0^{\circ}<\theta<90^{\circ}
\]
\[
\sin \theta<0 \text { and } \cos \theta<0
\]
(a) \(0^{\circ}<\theta<90^{\circ}\)
\[
\text { means } \theta \text { has terminal }
\]
\[
\text { (b) } 90^{\circ}<\theta<180^{\circ}
\]
(c) \(180^{\circ}<\theta<270^{\circ}\) side in quadrat TI I
(d) \(270^{\circ}<\theta<360^{\circ}\)
```

(e) any of the above may be true, more information is needed to determine which is true

## Reference Angles

Suppose we want to find the trig values for the angle $\theta$ shown. Note that the acute angle (pink) has terminal side through ( $x, y$ ), and by symmetry the terminal side of $\theta$ passes through the point $(-x, y)$ (same $y$ and opposite sign $x$ ).


Figure: What is the connection between the trig values for $\theta$ and those for the acute angle in pink?

Reference Angles that is not quodrate
Definition: Let $\theta$ be an angle In standard position. The reference angle $\theta^{\prime}$ associated with $\theta$ is the angle of measure $0^{\circ}<\theta^{\prime}<90^{\circ}$ between the terminal side of $\theta$ and the nearest part of the $x$-axis.


2nd Quadrant 1st Quadrant


## Example (a)

## Determine the reference angle.



## Example (b)

## Determine the reference angle.



## Question

The reference angle for $300^{\circ}$ is
(a) $-60^{\circ}$
(b) $60^{\circ}$
(c) $-30^{\circ}$

$$
\theta^{\prime}=360^{\circ}-300^{\circ}
$$

(d) $30^{\circ}$

## Theorem on Reference Angles

Theorem: If $\theta^{\prime}$ is the reference angle for the angle $\theta$, then

$$
\sin \theta^{\prime}=|\sin \theta|, \quad \cos \theta^{\prime}=|\cos \theta| \quad \& \quad \tan \theta^{\prime}=|\tan \theta| .
$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

Remark 2: This means that the trigonometric values for $\theta$ can differ at most by a sign (+ or -) from the values for $\theta^{\prime}$.

This means that

$$
\sin \theta=\sin \theta^{\prime} \text { or } \sin \theta=-\sin \theta^{\prime}
$$

Example: Using Reference Angles
Find the exact value of
(a) $\sin \left(135^{\circ}\right)$


$$
\begin{array}{ll}
\begin{aligned}
& \sin \left(135^{\circ}\right)= \sin \left(45^{\circ}\right) \\
& \text { or } \sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} \\
& \sin \left(135^{\circ}\right)=-\sin \left(45^{\circ}\right) \sin \theta>0 \text { in quad II } \\
& \text { 50 } \quad \sin \left(135^{\circ}\right)=\frac{\sqrt{2}}{2}
\end{aligned}
\end{array}
$$

