March 6 Math 2306 sec. 54 Spring 2019

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous
equations

any" +an 1y 4+ apy = g(x)
where g comes from the restricted classes of functions
» polynomials,
» exponentials,
» sines and/or cosines,
» and products and sums of the above kinds of functions

Recall y = yc + yp, so we'll have to find both the complementary and
the particular solutions!
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We'll consider cases

Using superposition as needed, begin with assumption:
Yo =Ypoy T+ Vo

where y,, has the same general form as g;(x).

Case I: y, as first written has no part that duplicates the
complementary solution y.. Then this first form will suffice.

Case ll: y,, has a term yp, that duplicates a term in the complementary
solution y.. Multiply that term by x”, where n is the smallest positive
integer that eliminates the duplication.
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Find the form of the particular soluition

y" —y" 4y —y=cosx+ x* —7x?

The characteristic equation m® — m? + m — 1 = 0 factors as
(m—1)(m? +1) = 0. So the roots are my = 1 and my 3 = +i.
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Lk oo =30y, 2 DT B T 1 6

= Yo AxConx +Bx Sinx + Ce +Dx ¢ Extfx e O
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Find the form of the particular soluition

y" — 2y’ + 5y = & + 7sin(2x)

The characteristic equation is m®> — 2m + 5 = 0 with roots, m = 1 + 2i.
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Thee Ye* Ag £ 8 Sn(23) ¢ CCos(zx)
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Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider
equations of the form

y'+y=tanx, or x%y"+xy —4y=¢".

The method of undetermined coefficients is not applicable to either of
these. We require another approach.
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Variation of Parameters

For the equation in standard form

a2y dy _
axz PPX g+ AX)y=g

suppose {y1(x), y2(x)} is a fundamental solution set for the
associated homogeneous equation. We seek a particular solution of
the form

Yo(X) = ur(X)y1(x) + uz(X)y2(x)

where uy and u» are functions we will determine (in terms of y4, y» and
9 Ve = €y, 00 + (Y, 09

This method is called variation of parameters.
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Variation of Parameters: Derivation of y,

y'+ P(x)y' + Q(x)y = 9(x)

Set  yp = u1(X)y1(X)+u2(x)y2(x)
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Remember that y/' + P(x)yj + Q(x)y; =0, fori=1,2
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