March 6 Math 2306 sec. 54 Spring 2019

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

We'll consider cases

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Find the form of the particular soluition

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}-7 x^{2}
$$

The characteristic equation $m^{3}-m^{2}+m-1=0$ factors as $(m-1)\left(m^{2}+1\right)=0$. So the roots are $m_{1}=1$ and $m_{2,3}= \pm i$.

$$
\begin{gathered}
y_{1}=e^{x}, y_{2}=e^{o x} \cos (x), y_{3}=e^{0 x} \sin (x) \quad \alpha=0, \beta=1 \\
y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x
\end{gathered}
$$

Let $g_{1}(x)=\cos x$ set $y_{p_{1}}=A \cos x+B \sin x$ Duplicates part of y_{c}

$$
y_{p_{1}}=(A \cos x+B \operatorname{Sin} x) x=A x \cos x+B x \sin x
$$

This is the correct form

Let $\delta_{2}(x)=x^{4}-7 x^{2} \quad y_{p 2}=C x^{4}+D x^{3}+E x^{2}+F x+G$

So $y_{p}=A x \cos x+B_{x} \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G$

Find the form of the particular solution

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x}+7 \sin (2 x)
$$

The characteristic equation is $m^{2}-2 m+5=0$ with roots, $m=1 \pm 2 i$.

$$
\begin{gathered}
y_{1}=e^{x} \cos (2 x), \quad y_{2}=e^{x} \sin (2 x) \quad \alpha=1, \beta=2 \\
y_{c}=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x)
\end{gathered}
$$

Let $g_{1}(x)=e^{x} \quad y_{p_{1}}=A e^{x} \quad$ correct form
For $g_{2}(x)=7 \sin (2 x) \quad y_{p_{2}}=B \sin (2 x)+C \cos (2 x)$
correct

Then

$$
y_{p}=A e^{x}+B \sin (2 x)+C \cos (2 x)
$$

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} .
$$

The method of undetermined coefficients is not applicable to either of these. We require another approach.
$\tan x$ is not the right kind of right hand side
The $2^{\text {nd }}$ equation is not constant coefficient

Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$
we hove 2 unknowns, u_{1} and u_{2}, but only on equation the ODE, well introduce a $2^{\text {nd }}$ equation to simplify the work. Differentiate

$$
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+\underbrace{u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}}_{\text {set to zero }}
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

Our other equation is going to be

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

$$
\begin{gathered}
y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} \\
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q_{(x)} y_{p}=g(x) \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+p(x)\left(u, y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x)
\end{gathered}
$$

well collect terms $u_{1}, u_{2}, u_{1}^{\prime}$, nd u_{2}^{\prime}

$$
\begin{gathered}
u_{1}\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right)+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x) \\
0
\end{gathered}
$$

Because y_{1} and y_{2} solve the homo sereous equation.
The two equations for u_{1} and u_{2} are

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g
\end{aligned}
$$

well solve using Crammer's rule.

In matrix form, the system is

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

Using Crammer's role, set

$$
\begin{aligned}
& w_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=0-g y_{2}=-g y_{2} \\
& w_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=y_{1} g-0=g y_{1}
\end{aligned}
$$

$W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$ the wronskion of y_{1} and y_{2}
nob $W \neq 0$ since they are linearly independent

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{w_{1}}{w}=\frac{-g y_{2}}{w} \text { and } u_{2}^{\prime}=\frac{w_{2}}{w}=\frac{g y_{1}}{w} \\
& u_{1}=\int \frac{-g(x) y_{2}(x)}{w} d x \text { and } u_{2}=\int \frac{g(x) y_{1}(x)}{w} d x
\end{aligned}
$$

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

