March 8 MATH 1112 sec. 54 Spring 2019

Section 6.3 Trigonometric Functions of any Angle

If θ is any angle in standard position, and (x, y) is any point on its terminal side (other than the origin) at a distance of $r=\sqrt{x^{2}+y^{2}}$ from the origin, then the trigonometric values of θ are defined by

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

Quadrants \& Signs of Trig Values

Example
Find the exact trigonometric value.
(a) $\sin \left(570^{\circ}\right)$

The reference angle

$$
\begin{aligned}
\theta^{\prime} & =210^{\circ}-180^{\circ} \\
& =30^{\circ}
\end{aligned}
$$

$$
\sin 30^{\circ}=\frac{1}{2}
$$

570° has terminal side in quadrant III where Sine <0.

$$
\sin 570^{\circ}=-\sin 30^{\circ}=\frac{-1}{2}
$$

Example
Find the exact trigonometric value.
(b) $\cos \left(-\frac{3 \pi}{4}\right)$

$$
\begin{aligned}
& \theta^{\prime}=\pi-\frac{3 \pi}{4}=\frac{\pi}{4} \\
& \cos \pi / 4=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$-\frac{3 \pi}{\hbar}$ is in quadrant III where cosine <0

$$
\cos ^{-\frac{3 \pi}{4}}=-\cos \frac{\pi}{4}=\frac{-1}{\sqrt{2}}
$$

Example
Suppose that

$$
\sin \theta=-\frac{1}{3}
$$

and when in standard position, the terminal side of θ is in the fourth quadrant. Determine the remaining trigonometric values of θ.
wéll draw a representative triangle.

$x>0$ and $y<0$

$$
\begin{gathered}
\sin \theta^{\prime}=\frac{1}{3} \\
\frac{\text { opp }}{n o p}
\end{gathered}
$$

$$
a^{2}+1^{2}=3^{2} \Rightarrow a^{2}=8
$$

$$
a=2 \sqrt{2}
$$

so we con take $(x, y)=(2 \sqrt{2},-1), r: 3$

$$
\begin{array}{ll}
\sin \theta=\frac{-1}{3}, & \cos \theta=\frac{2 \sqrt{2}}{3} \\
\tan \theta=\frac{-1}{2 \sqrt{2}}, & \cot \theta=-2 \sqrt{2} \\
\csc \theta=-3, & \sec \theta=\frac{3}{2 \sqrt{2}}
\end{array}
$$

