March 8 Math 2306 sec. 60 Spring 2019

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

We'll consider cases

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x)
$$

Using superposition as needed, begin with the assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
For each sub-problem:
Case I: $y_{p_{i}}$ as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: $y_{p_{i}}$ includes a term that duplicates a term in the complementary solution. Multiply $y_{p_{i}}$ by x^{n}, where n is the smallest positive integer required to eliminate the duplication.

Solve the IVP

$$
y^{\prime \prime}-y=4 e^{-x}+5 \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Get $y_{c}: \quad m^{2}-1=0 \Rightarrow(m-1)(m+1)=0 \quad m_{1}=1, m_{2}=-1$
So $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$
Yep：Solve $y^{\prime \prime}-y=4 e^{-x} \quad g_{1}(x)=4 e^{-x}$
try $y_{p_{1}}=A e^{-x}$ Duplicates $c_{2} e^{-x}$
$y_{p_{1}}=A x e^{-x}$ this is the correct form

$$
\begin{gathered}
y_{p_{1}}^{\prime}=-A x e^{-x}+A e^{-x}, y_{p_{1}^{\prime \prime}}=A x e^{-x}-A e^{-x}-A e^{-x}=A x e^{-x}-\partial A e^{-x} \\
y_{p_{1}}{ }^{\prime \prime}-y_{p}=4 e^{-x}
\end{gathered}
$$

$$
\begin{aligned}
A x e^{-x}-2 A e^{-x}-A x e^{-x} & =4 e^{-x} \\
-2 A e^{-x} & =4 e^{-x} \Rightarrow A
\end{aligned}
$$

So $y_{P_{1}}=-2 x \cdot e^{-x}$
Ip : Solve $y^{\prime \prime}-y=5 \quad g_{2}(x)=5$
Set $y_{p 2}=A$ this is correct

$$
\begin{aligned}
& y_{p_{2}}^{\prime}=0, \quad y_{p_{2}}^{\prime \prime}=0 \\
& y_{p_{2}}^{\prime \prime}-y_{p_{2}}=5 \\
& 0-A=5 \Rightarrow A=5
\end{aligned}
$$

s.

$$
y_{p_{2}}=-s
$$

$$
y_{p}=y_{p_{1}}+y_{p_{2}}=-2 \times e^{-x}-5
$$

and the general solution to the $O D E$ is

$$
y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}-5
$$

Now we apply the initial conditions

$$
\begin{gathered}
y(0)=0, \quad y^{\prime}(0)=0 \\
y(x)=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}-5 \\
y^{\prime}(x)=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x} \\
y(0)=c_{1}+c_{2}-5=0 \\
y^{\prime}(0)=c_{1}-c_{2}-2=0
\end{gathered}
$$

$$
\Rightarrow \quad \begin{aligned}
& c_{1}+c_{2}=5 \\
& c_{1}-c_{2}=2
\end{aligned}
$$

sum

$$
2 c_{1}=7 \quad c_{1}=\frac{7}{2}
$$

$$
c_{2}=5-c_{1}=\frac{10}{2}-\frac{7}{2}=\frac{3}{2}
$$

Finale, the solution to the IVP is

$$
y=\frac{7}{2} e^{x}+\frac{3}{2} e^{-x}-2 x e^{-x}-5
$$

