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Abstract. For this paper, we’ve explored Newton’s Method. We have enu-
merated a few applications and a means by which it is possible to determine

how good an initial estimate must be for it to work. Newton’s method is a

means of iteratively approximating a root of a function. This has many ap-
plications in approximating the solutions to equations of all kinds, so long as

they can be expressed in the form of a root finding problem. It is a very basic

algorithm and has hence been superseded, but it’s still worth studying and is
still a powerful way of estimating a root, with both pinpoint precision and ef-

ficiency, even though it is based off of the simple idea of linear approximation.

As you will see throughout this paper, it can be a very reliable method for
very accurate approximations. However, it is not a “cure-all” for finding the

root of a function. Like many approximating algorithms, it has its fair share
of quirks and oddities.

Introduction

We will first explore the general form of Newton’s Method, demonstrate its
flexibility by using it to approximate an intersection point, and show how it can be
applied to an unconventional problem involving performing the operation of division
without actually taking a ratio. We will then demonstrate the shortcomings of the
method when poor estimates are used, and finally use it to produce some interesting
series of iterate values.

1. Root Approximation

It is possible to approximate a root α of a function f(x) by choosing an arbitrary
x0 that can be assumed to be somewhere close to α. Then, successive linear ap-
proximations can be taken to get a better and better estimate of the actual location
of the root.

Theorem 1.1. The linear approximation of function f at point x0.

L(x) = f(x0) + f ′(x0)(x− x0)

L(x) may then be taken at x = 0 to find a succeeding x1, the location of the
approximation’s root.
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Theorem 1.2. The derivation of a step of Newton’s Law from a linear approxima-
tion.

f(x0) + f ′(x0)(x1 − x0) = 0

f ′(x0)(x1 − x0) = −f(x0)

x1 − x0 =
−f(x0)

f ′(x0)

x1 = x0 −
f(x0)

f ′(x0)

(1.1)

This works for finding any xn+1 from any xn.

Theorem 1.3. The general recursive form of Newton’s law where n is the current
iteration.

xn+1 = xn −
f(xn)

f ′(xn)

2. Approximating an Intersection of Two Functions

Figure 1. Graph showing one positive intersection of the two graphs.

Newton’s Method can also be used to approximate the intersection point of two
graphs. The equation 1/x = 1 + x3 has one positive solution. If you can set it up
as a root finding process, you can find out where they intersect.

1

x
= 1 + x3

1 = (1 + x3)x

1 = x+ x4

0 = x4 + x− 1

(2.1)

Now that we have it set up as a root finding problem, we can apply Newton’s
Method. For this problem, we can assume a good starting point for this problem



NEWTON’S METHOD 3

would be x0 = 1.

xn+1 = xn −
f(xn)

f ′(xn)

f(x) = x4 + x− 1

f ′(x) = 4x3 + 1

x1 = 1− (1)4 + (1)− 1

4(1)3 + 1

x1 =
4

5

(2.2)

Then, we simply put the result we obtained from the first run of the Newton’s
Method and replace x0 with x1 to find an even better approximation.

x2 =
4

5
−
(
4
5

)4
+
(
4
5

)
− 1

4
(
4
5

)3
+ 1

x2 ≈ 0.731234

This approximation is closer, but we can continue iterating to get an even better
approximation. We ended up doing five iterations of the method, and our fifth
iteration gave us x5 ≈ 0.724492. The solution from Wolfram Alpha (also technically
an approximation since the real answer is irrational) is x = 0.724491959, which is
an error of only 5.6 ∗ 10−8.

3. Approximating a Reciprocal

Some computers cannot directly perform division. They are restricted to addi-
tion, subtraction and multiplication. Using Newton’s Method, we can approximate
the reciprocal of a number b using only these three operations. Recall that in order
to analyze a problem by this method, we must express it in terms of root finding.

Theorem 3.1. The reciprocal 1
b expressed as the root of a function.

f(x) = b− 1

x

f ′(x) =
1

x2

We can then use Newton’s Method to approximate the location of this root,
ending with a formula that contains no division whatsoever.

Theorem 3.2. The recursive function to approximate the reciprocal 1
b without using

division.

xn+1 = xn −
b− 1

xn

1
xn

2

= xn −
(
b− 1

xn

)
(xn

2)

= xn − (bxn
2 − xn)

xn+1 = xn(2− bxn)

(3.1)
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Now we can test this by approximating the value of 1
π using x0 = 0.5 and again

using x0 = 0.7.

Example 3.3. Approximating the reciprocal of π.
b = π and x0 = 0.5

x1 = 0.5(2− 0.5π) ≈ 0.214602

x2 ≈ 0.214602(2− 0.214602π) ≈ 0.284521

x3 ≈ 0.214602(2− 0.214602π) ≈ 0.314723

x4 ≈ 0.314723(2− 0.314723π) ≈ 0.318269

(3.2)

After only four iterations the result is already pretty close to the actual value
1
π ≈ 0.318310. But lets see what happens with an x0 that’s further away.
b = π and x0 = 0.7

x1 = 0.7(2− 0.7π) ≈ −0.13938

x2 ≈ −0.13938(2−−0.13938π) ≈ −0.339791

x3 ≈ −0.339791(2−−0.3397912π) ≈ −1.0423

x4 ≈ −1.0423(2−−1.0423π) ≈ −5.49759

(3.3)

We’re getting nowhere fast with this.

There is a limit on how far our initial x0 can be from the actual root before we
end up overshooting and getting garbage results. This limit’s nature can be known
by building a function that plots how good our approximations are.

4. Error

Assuming we actually know the true location of the root we’re searching for (or
have a very good approximation already), we can build a function to determine the
relative error of our approximation. The smaller it is, the better the approximation.

Theorem 4.1. The general form of the formula to determine relative error.

actual− approximate

actual
=
α− xn
α

= Rel(xn)

We can specifically apply this to our reciprocal approximating function like so.

Example 4.2. The Relative Error function for 1
b

Rel(xn) =
1
b − xn

1
b

=

(
1

b
− xn

)
(b)

Rel(xn) = 1− bxn

(4.1)

And likewise

(4.2) Rel(xn+1) = 1− bxn+1

However, Rel(xn+1) is actually a quadratic function in terms of Rel(xn)! We
can prove this as follows.
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Theorem 4.3. Rel(xn+1) is quadratic upon its last iteration.
Assuming Rel(x) = 1− bx and xn+1 = xn(2− bxn)

Rel(xn+1) = 1− b(xn(2− bxn)))

= 1− (bxn(2− bxn))

= 1− (2bxn − (bxn)2

= (bxn)2 − 2bxn + 1

= (bxn − 1)2

= (−1)(bxn − 1)(−1)(bxn − 1)

= (1− bxn)2

Rel(xn+1) = Rel2(xn)

(4.3)

This means that Rel(x0) must have an absolute value less than 1 or else our
relative error will actually start INCREASING as we take more iterations and our
approximations will get incrementally worse. So, exactly how far away can x0 be
in our case?

Example 4.4.

|Rel(x0)| < 1

πx0| < 1
(4.4)

So lets find some solutions and see what region works with the original condition.√
(1− πx0)2 = 1

1− 2πx0 + π2x0
2 = 1

2x− πx02 = 0

(x)(2− πx0) = 0

(4.5)

So our zeroes here are 0 and 2
π . We know our region is actually between them

from prior experiments, since 0.5 worked and 0 < 0.5 < 2
π . This leaves us with:

0 < x0 <
2

π

Every iteration, the relative error is equal to the square of the relative error
of the previous iteration. That means as long as our initial estimate satisfies the
condition, our estimates improve quadratically with each iteration. The closer we
are, the closer we get with the next iteration. Of course this works the other way
too; if we start out of bounds, our estimates get ridiculous proportionally to the
square of the previous.

5. Examples with Newton’s Method

There are some fun examples for which Newton’s method produces interesting
sequences of iterates. Here are two good examples of some such oddities.

Example 5.1. Estimating the root of f(x) = 3
√
x with x0 6= 0.
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Figure 2. Graph of f(x) = 3
√
x.

Obviously, from looking at the graph above we can tell that the x-intercept for
this function is x = 0, but let’s see what happens when we try to approximate it
with Newton’s Method. So we start off with x0 = 1 and let us see what happens.

x1 = 1−
3
√

1

3 3
√

(1)2

x1 = 1− 1

3

x1 =
2

3

(5.1)

It seems that this is starting off okay. Let’s see what happens with the next
iteration.

x2 =
2

3
−

3

√
2
3

3
3

√(
2
3

)2
x2 ≈ 0.2851

(5.2)

It seems to still be working. It continues to approach the real root of 0. Let’s
try another iteration.

x3 = 0.2851−
3
√

0.2851

3
3
√

0.28512

x3 ≈ −0.2214

(5.3)

Huh. That doesn’t look right. It completely skipped over the actual answer
of 0 and went into the negative somehow, even though the graph is only real in
Quadrant I. Let’s see what happens with one more iteration.

x4 = −0.2214−
3
√
−0.2214

3 3
√

(−0.2214)2

x4 ≈ −0.496901− .477181i

(5.4)
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And yet, it is not getting any closer to 0. As far as we can tell, the reason for
this is that the derivative is undefined at x = 0, which breaks the approximation
process.

Example 5.2. Estimating the root of f(x) = x3 − 2x+ 2

Figure 3. Graph of f(x) = x3 − 2x+ 2.

As is clearly visible from the graph, f(x) = x3 − 2x + 2 has one real root near
−2. Let’s see what happens when we use Newton’s Method with an initial guess
that isn’t relatively close to the point where the graph crosses the x-axis, such as
x0 = 0.

f ′(x) = 3x2 − 2

x1 = 0− (0)3 − 2(0) + 2

3(0)2 − 2

x1 = 0− 2

−2
x1 = 1

(5.5)

That’s not right. It seems to be moving in the opposite direction of the inter-
ception point. Let’s observe what happens when we go through another iteration
of the method.

x2 = 1− (1)3 − 2(1) + 2

3(1)2 − 2

x2 = 1− 1

1
x2 = 0

(5.6)

Well that is strange. As we can see, no matter how many iterations we do, the
answers will just alternate between x = 0 and x = 1. Let’s see what happens
when we choose and initial guess that is a little farther from our first guess, maybe
x0 = .05?
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x1 = .05− (.05)3 − 2(.05) + 2

3(.05)2 − 2

x1 ≈ 1.0036

(5.7)

Yet it still seems to be acting as it did before with an initial guess of 0. Let’s
see if it follows the same pattern.

x2 = 1.0036− (1.0036)3 − 2(1.0036) + 2

3(1.0036)2 − 2

x2 ≈ 0.0212

(5.8)

It does. It turns out the next couple iterations are x3 = 1.0007 and x4 = 0.0042.
We can observe that if we were to take even more iterations of the method, the
values would get closer and closer to x = 0 and x = 1. It turns out that way for
any initial guess in the interval −0.1 < x < 0.1.
Just for fun, let’s see what happens when take an initial guess that is not even close
to x-intercept, such as x0 = 5.

x1 = 5− (5)3 − 2(5) + 2

3(5)2 − 2

x1 = 5− 125− 10− 2

75− 2

x1 = 5− 113

73
x1 ≈ 3.4521

(5.9)

Well, it is getting closer, so let us do another iteration of Newton’s Method.

x2 = 3.4521− (3.4521)3 − 2(3.4521) + 2

3(3.4521)2 − 2

x2 ≈ 2.3785

(5.10)

Still seems to be working. Let use the method once more.

x3 = 2.3785− (2.3785)3 − 2(2.3785) + 2

3(2.3785)2 − 2

x3 ≈ 1.6639

(5.11)

Slowly but surely it seems to be working. Let’s see what happens after a few
more iterations.
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x4 = 1.6639− (1.6639)3 − 2(1.6639) + 2

3(1.6639)2 − 2

x4 ≈ 1.1439

x5 = 1.1439− (1.1439)3 − 2(1.1439) + 2

3(1.1439)2 − 2

x5 ≈ 0.5160

x6 = 0.5160− (0.5160)3 − 2(0.5160) + 2

3(0.5160)2 − 2

x6 ≈ 1.4362

x7 = 1.4362− (1.4362)3 − 2(1.4362) + 2

3(1.4362)2 − 2

x7 ≈ 0.9372

x7 = 0.9372− (0.9372)3 − 2(0.9372) + 2

3(0.9372)2 − 2

x7 ≈ −0.5569

x8 = −0.5569− (−0.5569)3 − 2(−0.5569) + 2

3(−0.5569)2 − 2

x8 ≈ 2.1928

x9 = 2.1928− (2.1928)3 − 2(2.1928) + 2

3(2.1928)2 − 2

x9 ≈ 1.5362

(5.12)

And yet it does not seem to be going anywhere. This example shows kind of the
same back and forth pattern as before, and also supplements the fact that the initial
guess should be relatively close to the actual x-intercept. Fascinating.

Conclusion

As we have observed from this report, Newton’s Method can be a very efficient
method of approximating a root of a function. It can also be used to approximate
the intersection point of two functions. It seems that as long as the function you
are approximating a solution for is relatively tame, and you choose an initial guess
that is close to the intercept, it is very reliable. However, if you have a bad first
guess or a function with a complicated derivative or slope, the method breaks and
behaves rather oddly. All in all, as long as you know how to use it and know its
limitations, then the Newton’s Method is a great way to approximate roots.
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