November 12 MATH 1113 sec. 51 Fall 2018

Section 6.6: Graphing Trigonometric Functions with Transformations

$$
f(x)=\sin (x)
$$

$f(x)=\cos (x)$

Figure: Recall the basic graphs of the six trigonometric functions. Sine and Cosine

Basic Trigonometric Graphs

Figure: Recall the basic graphs of the six trigonometric functions. Tangent and Cotangent

Basic Trigonometric Graphs

$f(x)=\sec (x)$

Figure: Recall the basic graphs of the six trigonometric functions. Cosecant and Secant

Question

The fundamental period of $\sin x$ and $\cos x$ is
(a) π
(b) 2π
(c) $2 n \pi$ for integers n
(d) there's no such thing as a fundamental period

Question

$\sin x=0$ whenever x is
(a) $\frac{\pi}{2}$
(b) any negative number
(c) any real number
$(\mathrm{d}) n \pi$ whenever n is an integer

Transformations on Sine and Cosine

Our goal is to graph functions of the form

$$
f(x)=a \sin (b x-c)+d \quad \text { or } \quad f(x)=a \cos (b x-c)+d
$$

Note: here we will be graphing points (x, y) on a curve $y=f(x)$.

Amplitude

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Definition: Let a be any nonzero real number. The amplitude of the function f defined above is the value $|a|$.

Recall that this is half the distance between the maximum and minimum values.

If $a<0$ the graph is reflected in the x-axis. But the amplitude is still $|a|$.

Period

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Theorem: Let b be any positive real number. The fundamental period of the function f above is given by

$$
T=\frac{2 \pi}{b}
$$

Recall that the fundamental period of $\cos x$ and $\sin x$ is 2π.
Due to symmetry, we can always assume $b>0$. Note for example

$$
\sin (-3 x+2)=\sin (-(3 x-2))=-\sin (3 x-2) .
$$

The period is always positive. The period in this example is $\frac{2 \pi}{3}$. Allowing b to be signed, the period would be written as

$$
T=\frac{2 \pi}{|b|} .
$$

Period

Figure: Comparisons with $b=1 / 2,1$, and 2 . On the interval $-2 \pi<x<2 \pi$ we obtain one $(b=1 / 2)$, two $(b=1)$ or four $(b=2)$ full cycles.

Period

Figure: Comparisons with $b=1 / 2,1$, and 2 . On the interval $-2 \pi<x<2 \pi$ we obtain one $(b=1 / 2)$, two $(b=1)$ or four $(b=2)$ full cycles.

Example
Identify the period of each function.
(a) $f(x)=3 \sin (4 x-2)+1$

$$
\begin{aligned}
& (4 x-2)+1 \\
& b=4
\end{aligned} \quad \text { Reiod } \quad T=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

(b) $\quad f(x)=-5 \sin \left(\frac{\pi x}{2}\right)+7$

$$
\begin{aligned}
& \left(\frac{\pi x}{2}\right)+7 \\
& b=\frac{\pi}{2}
\end{aligned} \quad \text { puiod } \quad T=\frac{2 \pi}{\pi / 2}=4
$$

(c) $f(x)=2-6 \cos (2 x+3) \quad$ puice $T=\frac{2 \pi}{2}=\pi$

$$
b=2
$$

Frequency

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Definition: The reciprocal of the period is called the frequency. That is

$$
\text { frequency }=\frac{1}{T}=\frac{b}{2 \pi} \text {. }
$$

If x represents time, then

- the period tells us how much time is required for one full cycle, and
- the frequency tells us how many cycles occur in one time unit.

If $y=\cos (b x)($ or $y=\sin (b x))$, then b the number of cycles occuring in an interval of length 2π.

Question

The figure shows $y=f(x)$ for $0<x<2 \pi$. Which of the following is true?
(a) $f(x)=2 \sin \left(\frac{1}{3} x\right)$
(b) $f(x)=2 \sin (3 x)$
(c) $f(x)=\frac{1}{2} \sin \left(\frac{1}{3} x\right)$
(d) $f(x)=\frac{1}{2} \sin (3 x)$

Figure: Hint: Count the number of full cycles.

Phase Shift (horizontal shift)

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$ Definition: A horizontal shift is called a phase shift. Again assuming that $b>0$, the phase shift for f above is

$$
\frac{|c|}{b} \text { units }
$$

to the right if $c>0$ and to the left if $c<0$.

Example
Identify the phase shift of each function. Determine if it is left or right.
(a) $f(x)=3 \sin (4 x-2)+1$ phase shift $\frac{|c|}{6}=\frac{2}{4}=\frac{1}{2}$ $b=4 \quad c=2$
right
(b) $\quad f(x)=-5 \sin \left(\frac{\pi x}{2}\right)+7$

No phase shift

$$
b=\frac{\pi}{2} \quad c=0
$$

(c) $f(x)=2-6 \cos (2 x+3) \quad$ phase shift $\quad \frac{|c|}{6}=\frac{|-3|}{2}=\frac{3}{2}$

$$
b=2 \quad c=-3
$$ to the left

Question

Let $f(x)=-3 \sin \left(\frac{\pi x}{4}-\frac{1}{3}\right)+1$. Then which of the following it true regarding the phase shift.
(a) The phase shift is $\frac{4}{3 \pi}$, the graph is shifted to the left.
(b) The phase shift is $\frac{4}{3 \pi}$, the graph is shifted to the right.

$$
\frac{k 1}{b}=\frac{1 / 3}{\pi / 4}=\frac{4}{3 \pi} \quad c>0
$$

(c) The phase shift is $\frac{3 \pi}{4}$, the graph is shifted to the left.
(d) The phase shift is $\frac{3 \pi}{4}$, the graph is shifted to the right.

Vertical Shift

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$ Definition: If d is a nonzero number, then the function f has a vertical shift of $|d|$ units up if $d>0$ and down if $d<0$.

Example
Identify the vertical shift of each function. Determine if it is up or down.
(a) $f(x)=3 \sin (4 x-2)+1 \quad$ Vertices shift 1 unit up

$$
d=1
$$

(b) $f(x)=-5 \sin \left(\frac{\pi x}{2}\right)-7$ shift 7 units down

$$
d=-7
$$

(c) $f(x)=2-6 \cos (2 x+3)$ shift 2 units up

$$
d=2
$$

Parent Plots

The period can be divided into four equal segments.
For the sine function $\quad x$-int $\rightarrow \max \rightarrow x$-int \rightarrow min $\rightarrow x$-int

Parent Plots

The period can be divided into four equal segments.
For the cosine function $\max \rightarrow x$-int \rightarrow min $\rightarrow x$-int $\rightarrow \max$

Pulling it all Together!

Plot two full periods of the function $f(x)=a \sin (b x-c)+d$ (or $f(x)=a \cos (b x-c)+d)$. Carry out each of the following steps:

- Identify the amplitude and determine if there is an x-axis reflection.
- Identify the period. Find the length of one fourth of the period.
- Identify any phase shift with its direction. Identify end points and points that divide the period into four equal parts.
- Identify any vertical shift with its direction.
- Use the basic plot of $y=\sin x$ or $y=\cos x$ to get the profile.

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)
$$

Identify the amplitude and vertical shift. Find the maximum and minimum values and determine if there is a reflection in the horizontal.

Amplitude $\quad A=|a|=|-4|=4$
Vertical shift 2 units up

$$
d=2
$$

Then is a reflection in the horizontal.
Mow value is $2+|-4|=6$
Min value is $2-|-4|=-2$

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)
$$

Find the period and phase shift with direction.
Period $T=\frac{2 \pi}{b}=\frac{2 \pi}{\pi}=2$
Phase sniff $\frac{|c|}{b}=\frac{\pi / 2}{\pi}=\frac{1}{2}$
shift is $\frac{1}{2}$ unit to the right

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)
$$

Identify the begining and end of one period, and divide it into fourths to determine where major points on the graph are (max/mins and translated x-intercepts)

The graph should start $\frac{1}{2}$ units to the right of the y-axis.

A paid for cos x starts @ 0 and ends e 2π

$$
\begin{aligned}
& \pi x-\frac{\pi}{2}=0 \Rightarrow \pi x=\frac{\pi}{2} \Rightarrow x=\frac{1}{2} \text { start } \rightarrow 2 \text { units } \\
& \pi x-\frac{\pi}{2}=2 \pi \Rightarrow \pi x=\frac{5 \pi}{2} \Rightarrow x=\frac{5}{2} \text { finish total } \\
& \frac{1}{4} T=\frac{1}{4}(2)=\frac{1}{2} \text { key } x \text {-values }
\end{aligned}
$$

$$
\frac{1}{2} \quad 1 \quad \frac{3}{2} \quad 2 \quad \frac{5}{2}
$$

min int. max int min
$f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)$
Plot two periods of its graph.

Section 7.4: Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) "1". What if the question is reversed? What if someone asks
"What angle has a sine value of $\frac{1}{2}$?"

$$
\sin \frac{\pi}{6}=\frac{1}{2}
$$

one such ought is

$$
\frac{\pi}{6} \text {, another is } \frac{5 \pi}{6}
$$

Restricting the Domain of $\sin (x)$

Figure: To define an inverse sine function, we start by restricting the domain of $\sin (x)$ to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval $[-1,1]$ the inverse sine of x is denoted by either

$$
\sin ^{-1}(x) \text { or } \arcsin (x)
$$

and is defined by the relationship

$$
y=\sin ^{-1}(x) \quad \Longleftrightarrow \quad x=\sin (y) \quad \text { where } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} .
$$

The Domain of the Inverse Sine is $-1 \leq x \leq 1$.
The Range of the Inverse Sine is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$
\sin ^{-1}(x) \neq \frac{1}{\sin (x)}
$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$
\frac{1}{\sin (x)}=(\sin (x))^{-1} \quad \text { or write } \quad \frac{1}{\sin (x)}=\csc (x)
$$

Some Inverse Sine Values

We can build a table of some inverse sine values by using our knowledge of the sine function.

X	$\sin (x)$
$-\frac{\pi}{2}$	-1
$-\frac{\pi}{4}$	$-\frac{1}{\sqrt{2}}$
$-\frac{\pi}{6}$	$-\frac{1}{2}$
0	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$-\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

x	$\sin ^{-1}(x)$
-1	$-\frac{\pi}{2}$
$-\frac{1}{\sqrt{2}}$	$-\frac{\pi}{4}$
$-\frac{1}{2}$	$-\frac{\pi}{6}$
0	0
$\frac{1}{\sqrt{2}}$	$\frac{\pi}{4}$
$\frac{\sqrt{3}}{2}$	$\frac{\pi}{3}$
1	$\frac{\pi}{2}$

Conceptual Definition ${ }^{1}$

We can think of the inverse sine function in the following way: $\sin ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

[^0]
[^0]: ${ }^{1}$ We want to consider $f(x)=\sin ^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a very useful conceptual device for working with and evaluating this function.

