November 12 MATH 1113 sec. 51 Fall 2018

Section 6.6: Graphing Trigonometric Functions with Transformations

Figure: Recall the basic graphs of the six trigonometric functions. Sine and Cosine

Basic Trigonometric Graphs

Figure: Recall the basic graphs of the six trigonometric functions. Tangent and Cotangent

Basic Trigonometric Graphs

Figure: Recall the basic graphs of the six trigonometric functions. Cosecant and Secant

Question

The fundamental period of $\sin x$ and $\cos x$ is

- (a) π
- (b) 2π
 - (c) $2n\pi$ for integers n
 - (d) there's no such thing as a fundamental period

Question

 $\sin x = 0$ whenever x is

- (a) $\frac{\pi}{2}$
- (b) any negative number
- (c) any real number
- $n\pi$ whenever n is an integer

Transformations on Sine and Cosine

Our goal is to graph functions of the form

$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

Note: here we will be graphing points (x, y) on a curve y = f(x).

Amplitude

Consider:
$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

Definition: Let *a* be any nonzero real number. The **amplitude** of the function f defined above is the value |a|.

Recall that this is half the distance between the maximum and minimum values.

If a < 0 the graph is reflected in the x-axis. But the amplitude is still |a|.

Period

Consider:
$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

Theorem: Let b be any positive real number. The **fundamental period** of the function f above is given by

$$T=rac{2\pi}{b}.$$

Recall that the fundamental period of $\cos x$ and $\sin x$ is 2π .

Due to symmetry, we can always assume b > 0. Note for example

$$\sin(-3x+2) = \sin(-(3x-2)) = -\sin(3x-2).$$

The period is **always positive**. The period in this example is $\frac{2\pi}{3}$. Allowing *b* to be signed, the period would be written as

$$T=rac{2\pi}{|b|}.$$

Figure: Comparisons with b = 1/2, 1, and 2. On the interval $-2\pi < x < 2\pi$ we obtain one (b = 1/2), two (b = 1) or four (b = 2) full cycles.

Period

Figure: Comparisons with b = 1/2, 1, and 2. On the interval $-2\pi < x < 2\pi$ we obtain one (b = 1/2), two (b = 1) or four (b = 2) full cycles.

Example

Identify the period of each function.

(a)
$$f(x) = 3\sin(4x-2)+1$$
 $b = 4$
 $period$
 $T = \frac{2\pi}{4} = \frac{\pi}{2}$

(b)
$$f(x) = -5\sin\left(\frac{\pi x}{2}\right) + 7$$

$$6 = \frac{\pi}{2}$$
pui où $T: \frac{2\pi}{\pi / 2} = 4$

(c)
$$f(x) = 2 - 6\cos(2x + 3)$$
 period $T = \frac{2\pi}{2} = \pi$

Frequency

Consider:
$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

Definition: The reciprocal of the period is called the **frequency**. That is

frequency
$$=\frac{1}{T}=\frac{b}{2\pi}$$
.

If x represents time, then

- the period tells us how much time is required for one full cycle, and
- the frequency tells us how many cycles occur in one time unit.

If $y = \cos(bx)$ (or $y = \sin(bx)$), then b the number of cycles occurring in an interval of length 2π .

Question

Figure: Hint: Count the number of full cycles.

Phase Shift (horizontal shift)

Consider: $f(x) = a\sin(bx - c) + d$ or $f(x) = a\cos(bx - c) + d$

Definition: A horizontal shift is called a **phase shift**. Again assuming that b > 0, the phase shift for f above is

$$\frac{|c|}{b}$$
 units

to the right if c > 0 and to the left if c < 0.

Example

Identify the phase shift of each function. Determine if it is left or right.

(a)
$$f(x) = 3\sin(4x-2)+1$$
 phase shift $\frac{|c|}{6} = \frac{2}{4} = \frac{1}{2}$
 $\frac{1}{6} = \frac{1}{4} = \frac{1}{2}$

(b)
$$f(x) = -5\sin\left(\frac{\pi x}{2}\right) + 7$$

$$b = \frac{\pi}{2} \quad c = 0$$

(c)
$$f(x) = 2 - 6\cos(2x + 3)$$
 phase shift $\frac{|c|}{b} = \frac{|-3|}{2} = \frac{3}{2}$
b=2 $c = -3$

November 12, 2018 15 / 70

Question

Let $f(x) = -3\sin\left(\frac{\pi x}{4} - \frac{1}{3}\right) + 1$. Then which of the following it true regarding the phase shift.

- (a) The phase shift is $\frac{4}{3\pi}$, the graph is shifted to the left.
- (b) The phase shift is $\frac{4}{3\pi}$, the graph is shifted to the right.
- (c) The phase shift is $\frac{3\pi}{4}$, the graph is shifted to the left.
- (d) The phase shift is $\frac{3\pi}{4}$, the graph is shifted to the right.

Vertical Shift

Consider: $f(x) = a\sin(bx - c) + d$ or $f(x) = a\cos(bx - c) + d$

Definition: If d is a nonzero number, then the function f has a **vertical** shift of |d| units up if d > 0 and down if d < 0.

Example

Identify the vertical shift of each function. Determine if it is up or down.

(a)
$$f(x) = 3\sin(4x-2)+1$$
 Verhild Shift 1 with wp $d = 1$

(b)
$$f(x) = -5\sin\left(\frac{\pi x}{2}\right) - 7$$
 Shift 7 units down $J = -7$

(c)
$$f(x) = 2 - 6\cos(2x + 3)$$
 shift 2 with $\frac{1}{2}$

Parent Plots

The period can be divided into four equal segments.

For the sine function x-int \to max $\to x$ -int \to min $\to x$ -int

November 12, 2018

Parent Plots

The period can be divided into four equal segments.

For the cosine function $\max \rightarrow x$ -int $\rightarrow \min \rightarrow x$ -int $\rightarrow \max \rightarrow x$

Pulling it all Together!

Plot two full periods of the function $f(x) = a\sin(bx - c) + d$ (or $f(x) = a\cos(bx - c) + d$). Carry out each of the following steps:

- Identify the amplitude and determine if there is an x-axis reflection.
- Identify the period. Find the length of one fourth of the period.
- Identify any phase shift with its direction. Identify end points and points that divide the period into four equal parts.
- Identify any vertical shift with its direction.
- ▶ Use the basic plot of $y = \sin x$ or $y = \cos x$ to get the profile.

$$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$$

Identify the amplitude and vertical shift. Find the maximum and minimum values and determine if there is a reflection in the horizontal.

$$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$$

Find the period and phase shift with direction.

Pariod
$$T = \frac{2\pi}{b} = \frac{2\pi}{\pi} = 2$$

Phase snift $\frac{|c|}{b} = \frac{\pi/2}{\pi} = \frac{1}{2}$

Shift is $\frac{1}{2}$ unit to the right

$$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$$

Identify the begining and end of one period, and divide it into fourths to determine where major points on the graph are (max/mins and translated *x*-intercepts)

The graph should start
$$\frac{1}{2}$$
 units to the right of the y-axis.

A period for Cosx Starts @ 0 and ends @ 21 $\pi x - \frac{\pi}{2} = 0 \Rightarrow \pi x = \frac{\pi}{2} \Rightarrow x = \frac{1}{2}$ Start $\Rightarrow 2$ units $\pi x - \frac{\pi}{2} = 2\pi \Rightarrow \pi x = \frac{5\pi}{2} \Rightarrow x = \frac{5}{2}$ finish total $\frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{3}{2} = \frac{5}{2}$ key x -values

November 12, 2018 24 / 70

$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$

Plot two periods of its graph.

Section 7.4: Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) " $\frac{1}{2}$ ". What if the question is reversed? What if someone asks

"What angle has a sine value of
$$\frac{1}{2}$$
?"

Sin $\frac{\pi}{6} = \frac{1}{2}$

One such angle is $\frac{\pi}{6}$, another is $\frac{5\pi}{6}$

Restricting the Domain of sin(x)

Figure: To define an inverse sine function, we start by restricting the domain of $\sin(x)$ to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval [-1,1] the inverse sine of x is denoted by either

$$\sin^{-1}(x)$$
 or $\arcsin(x)$

and is defined by the relationship

$$y = \sin^{-1}(x) \iff x = \sin(y) \text{ where } -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$$

The Domain of the Inverse Sine is $-1 \le x \le 1$.

The Range of the Inverse Sine is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}.$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$\frac{1}{\sin(x)} = (\sin(x))^{-1} \quad \text{or write} \quad \frac{1}{\sin(x)} = \csc(x).$$

Some Inverse Sine Values

We can build a table of some inverse sine values by using our knowledge of the sine function.

X	sin(x)
$-\frac{\pi}{2}\frac{\pi}{4}\frac{\pi}{4}\frac{\pi}{6}$ $-\frac{\pi}{4}\frac{\pi}{3}\frac{\pi}{2}$	_1
$-\frac{\pi}{4}$	$-\frac{1}{\sqrt{2}}$
$-\frac{\pi}{6}$	$\begin{array}{c c} \sqrt{2} \\ -\frac{1}{2} \\ 0 \end{array}$
0	0
$\frac{\pi}{4}$	$\begin{array}{c c} & \frac{1}{\sqrt{2}} \\ & \sqrt{3} \end{array}$
$\frac{\pi}{3}$	$-\frac{\sqrt{3}}{2}$
$rac{\pi}{2}$	1

X	$\sin^{-1}(x)$
_1	$-\frac{\pi}{2}$
$-\frac{1}{\sqrt{2}}$	$-\frac{\kappa}{4}$
$-\frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{2}$	$-\frac{6}{6}$
$\frac{1}{\sqrt{2}}$	$\frac{\pi}{4}$
$\frac{\frac{1}{\sqrt{2}}}{\sqrt{3}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Conceptual Definition¹

We can think of the inverse sine function in the following way:

 $\sin^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

We want to consider $f(x) = \sin^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a **very useful** conceptual device for working with and evaluating this function.