November 12 MATH 1113 sec. 51 Fall 2018

Section 6.6: Graphing Trigonometric Functions with Transformations

Figure: Recall the basic graphs of the six trigonometric functions. Sine and Cosine

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 12, 2018

Basic Trigonometric Graphs

Figure: Recall the basic graphs of the six trigonometric functions. Tangent and Cotangent

Basic Trigonometric Graphs

Figure: Recall the basic graphs of the six trigonometric functions. Cosecant and Secant

Question

The fundamental period of $\sin x$ and $\cos x$ is

(d) there's no such thing as a fundamental period

< ロ > < 同 > < 回 > < 回 >

November 12, 2018

Question

 $\sin x = 0$ whenever x is

(a) $\frac{\pi}{2}$

(b) any negative number

(c) any real number

< ロ > < 同 > < 回 > < 回 >

Transformations on Sine and Cosine

Our goal is to graph functions of the form

$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

Note: here we will be graphing points (x, y) on a curve y = f(x).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Amplitude

Consider: $f(x) = a \sin(bx - c) + d$ or $f(x) = a \cos(bx - c) + d$

Definition: Let *a* be any nonzero real number. The **amplitude** of the function *f* defined above is the value |a|.

Recall that this is half the distance between the maximum and minimum values.

If a < 0 the graph is reflected in the *x*-axis. But the amplitude is still |a|.

November 12, 2018 7 / 70

Period

Consider: $f(x) = a \sin(bx - c) + d$ or $f(x) = a \cos(bx - c) + d$

Theorem: Let *b* be any positive real number. The **fundamental period** of the function *f* above is given by

$$T=rac{2\pi}{b}.$$

Recall that the fundamental period of $\cos x$ and $\sin x$ is 2π . Due to symmetry, we can always assume b > 0. Note for example

$$\sin(-3x+2) = \sin(-(3x-2)) = -\sin(3x-2).$$

The period is **always positive**. The period in this example is $\frac{2\pi}{3}$. Allowing *b* to be signed, the period would be written as

$$T=\frac{2\pi}{|b|}.$$

Figure: Comparisons with b = 1/2, 1, and 2. On the interval $-2\pi < x < 2\pi$ we obtain one (b = 1/2), two (b = 1) or four (b = 2) full cycles.

Period

Figure: Comparisons with b = 1/2, 1, and 2. On the interval $-2\pi < x < 2\pi$ we obtain one (b = 1/2), two (b = 1) or four (b = 2) full cycles.

Example

Identify the period of each function.

(a)
$$f(x) = 3\sin(4x-2) + 1$$
 period $T = \frac{2\pi}{4} = \frac{\pi}{2}$
b = 4

(b)
$$f(x) = -5\sin\left(\frac{\pi x}{2}\right) + 7$$
 for $T = \frac{2\pi}{\pi h} = 4$
 $h = \frac{\pi}{2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > □
 November 12, 2018

11/70

(c) $f(x) = 2 - 6\cos(2x+3)$ T = $\frac{2\pi}{2} = \pi$ b = 2

Frequency

Consider: $f(x) = a \sin(bx - c) + d$ or $f(x) = a \cos(bx - c) + d$

Definition: The reciprocal of the period is called the **frequency**. That is $frequency = \frac{1}{2} - \frac{b}{2}$

frequency = $\frac{1}{T} = \frac{b}{2\pi}$.

If x represents time, then

- the period tells us how much time is required for one full cycle, and
- the frequency tells us how many cycles occur in one time unit.

If $y = \cos(bx)$ (or $y = \sin(bx)$), then *b* the number of cycles occuring in an interval of length 2π .

November 12, 2018

Question

Figure: Hint: Count the number of full cycles.

November 12, 2018 13 / 70

Phase Shift (horizontal shift)

Consider: $f(x) = a \sin(bx - c) + d$ or $f(x) = a \cos(bx - c) + d$

Definition: A horizontal shift is called a **phase shift**. Again assuming that b > 0, the phase shift for *f* above is

units

|*C*|

to the right if c > 0 and to the left if c < 0.

Example

Identify the phase shift of each function. Determine if it is left or right.

(a)
$$f(x) = 3\sin(4x-2)+1$$

 $b=4$ $c=2$
(b) $f(x) = -5\sin\left(\frac{\pi x}{2}\right)+7$
 $b=\frac{\pi}{2}$ $c=0$
(c) $f(x) = 2-6\cos(2x+3)$
 $b=2$ $c=-3$
No phase prift $\frac{|c|}{b} = \frac{|-3|}{2} = \frac{3}{2}$
 $b=2$ $c=-3$
No phase prift $\frac{|c|}{b} = \frac{|-3|}{2} = \frac{3}{2}$
 $b=2$ $c=-3$
November 12, 2018

Question

Let $f(x) = -3 \sin\left(\frac{\pi x}{4} - \frac{1}{3}\right) + 1$. Then which of the following it true regarding the phase shift.

(a) The phase shift is $\frac{4}{3\pi}$, the graph is shifted to the left. $\zeta:\frac{1}{3\pi}$ (b) The phase shift is $\frac{4}{3\pi}$, the graph is shifted to the right. (c) The phase shift is $\frac{3\pi}{4}$, the graph is shifted to the left. (d) The phase shift is $\frac{3\pi}{4}$, the graph is shifted to the right.

Vertical Shift

Consider: $f(x) = a\sin(bx - c) + d$ or $f(x) = a\cos(bx - c) + d$

Definition: If *d* is a nonzero number, then the function *f* has a **vertical** shift of |d| units up if d > 0 and down if d < 0.

< ロ > < 同 > < 回 > < 回 >

November 12, 2018

Example

Identify the vertical shift of each function. Determine if it is up or down.

(a)
$$f(x) = 3\sin(4x-2) + 1$$
 V. shift 2 unit up
d = 1

(b)
$$f(x) = -5\sin\left(\frac{\pi x}{2}\right) - 7$$
 U. Shift Funits down
 $d = -7$

(c) $f(x) = 2 - 6\cos(2x + 3)$ $\sqrt{5} \sin(4x) = 2 - 6\cos(2x + 3)$

November 12, 2018

э

Parent Plots

The period can be divided into four equal segments. For the sine function x-int $\rightarrow \max \rightarrow x$ -int $\rightarrow \min \rightarrow x$ -int x-int x-int

Parent Plots

The period can be divided into four equal segments. For the cosine function $\max \rightarrow x$ -int $\rightarrow \min \rightarrow x$ -int $\rightarrow \max_{\text{November 12, 2018}} = 20/70$

Pulling it all Together!

Plot two full periods of the function $f(x) = a \sin(bx - c) + d$ (or $f(x) = a \cos(bx - c) + d$). Carry out each of the following steps:

- Identify the amplitude and determine if there is an x-axis reflection.
- Identify the period. Find the length of one fourth of the period.
- Identify any phase shift with its direction. Identify end points and points that divide the period into four equal parts.
- Identify any vertical shift with its direction.
- Use the basic plot of $y = \sin x$ or $y = \cos x$ to get the profile.

$$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$$

Identify the amplitude and vertical shift. Find the maximum and minimum values and determine if there is a reflection in the horizontal.

Ampl:tude A= 1-41 = 4 V. shift 2 units up Max vole d+1al = 2+4=6 win John d - |a| = 2 - 4 = -2There is a reflection in the horizontal * features will be min_int - max - int - min

November 12, 2018 22 / 70

$$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$$

Find the period and phase shift with direction.

Period
$$\frac{2\pi}{6} = \frac{2\pi}{\pi} = Z$$

Phase shift $\frac{|c|}{6} = \frac{\pi}{\pi} = \frac{1}{2}$ Shift to the
right

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

$f(x) = 2 - 4\cos\left(\pi x - \frac{\pi}{2}\right)$

Identify the begining and end of one period, and divide it into fourths to determine where major points on the graph are (max/mins and translated *x*-intercepts)

be have a phose shift to unit to the right and c period of 2. A period should start @ 12 and end C ±+2 = 52. Cos(x) has a period starting CO and enting C ZTT. $\pi x - \frac{\pi}{2} = 0 \Rightarrow \pi x = \frac{\pi}{2} \Rightarrow x = \frac{1}{2} \quad \text{period Start}$ $\pi x - \frac{\pi}{2} = 2\pi \implies \pi x : \frac{5\pi}{2} \implies x : \frac{5}{2} \implies x : \frac{5}{2}$ 4 period = 4.2 = 12 12 lieg points (x-volves) into a conte Min Dace November 12, 2018 24 / 70

Section 7.4: Inverse Trigonometric Functions

Question: If someone asks "what is the sine of $\frac{\pi}{6}$?" we can respond with the answer (from memory or perhaps using a calculator) " $\frac{1}{2}$ ". What if the question is reversed? What if someone asks

"What angle has a sine value of $\frac{1}{2}$?"

An answer is
$$\frac{11}{6}$$
; another is $\frac{511}{6}$.

イロト 不得 トイヨト イヨト

Restricting the Domain of sin(x)

Figure: To define an inverse sine function, we start by restricting the domain of sin(x) to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

November 12, 2018

The Inverse Sine Function (a.k.a. arcsine function)

Definition: For x in the interval [-1, 1] the inverse sine of x is denoted by either

$$\sin^{-1}(x)$$
 or $\arcsin(x)$

and is defined by the relationship

$$y = \sin^{-1}(x) \iff x = \sin(y)$$
 where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

November 12, 2018

28/70

The Domain of the Inverse Sine is $-1 \le x \le 1$.

The Range of the Inverse Sine is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Notation Warning!

Caution: We must remember not to confuse the superscript -1 notation with reciprocal. That is

$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}.$$

If we want to indicate a reciprocal, we should use parentheses or trigonometric identities

$$\frac{1}{\sin(x)} = (\sin(x))^{-1} \quad \text{or write} \quad \frac{1}{\sin(x)} = \csc(x).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >