November 12 Math 2306 sec. 53 Fall 2018

Section 16: Laplace Transforms of Derivatives and IVPs

Solve the initial value problem.
$y^{\prime \prime}+4 y^{\prime}+4 y=t e^{-2 t} \quad y(0)=1, y^{\prime}(0)=0$
We got started on this problem on Friday, but we ran out of time. We took the transform of both sides using the convention $Y(s)=\mathscr{L}\{y\}$

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime \prime}+4 y^{\prime}+4 y\right\} & =\mathscr{L}\left\{t e^{-2 t}\right\} \\
\mathscr{L}\left\{y^{\prime \prime}\right\}+4 \mathscr{L}\left\{y^{\prime}\right\}+4 \mathscr{L}\{y\} & =\frac{1}{(s+2)^{2}} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+4 Y(s) & =\frac{1}{(s+2)^{2}} \\
\left(s^{2}+4 s+4\right) Y(s)-s-4 & =\frac{1}{(s+2)^{2}}
\end{aligned}
$$

The last line includes use of the given initial conditions.

$$
\begin{aligned}
& \left(s^{2}+4 s+4\right) Y(s)=\frac{1}{(s+2)^{2}}+s+4 \\
& Y(s)=\frac{1}{(s+2)^{2}\left(s^{2}+4 s+4\right)}+\frac{s+4}{s^{2}+4 s+4}
\end{aligned}
$$

note $s^{2}+4 s+4=(s+2)^{2}$

$$
Y(s)=\frac{1}{(s+2)^{4}}+\frac{s+4}{(s+2)^{2}}
$$

Not $s+4=s+2+2$

$$
Y(s)=\frac{1}{(s+2)^{4}}+\frac{s+2+2}{(s+2)^{2}}
$$

$$
\begin{aligned}
& Y(s)=\frac{1}{(s+2)^{4}}+\frac{s+2}{(s+2)^{2}}+\frac{2}{(s+2)^{2}} \\
& \begin{aligned}
Y(s)= & \frac{1}{(s+2)^{4}}+\frac{1}{s+2}+\frac{2}{(s+2)^{2}} \\
& \begin{aligned}
\text { form } & \frac{\text { form }}{s^{4}} \\
\mathcal{L}^{-1}\left\{\frac{1}{s^{4}}\right\} & =\mathscr{L}^{-1}\left\{\frac{1}{3!} \frac{3!}{s^{4}}\right\} \quad \mathcal{L}^{-1}\left\{\frac{2}{s^{2}}\right\}
\end{aligned} \\
= & =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\} \\
& =2 t
\end{aligned}
\end{aligned}
$$

Finally we get $y(t)=\mathscr{L}^{-1}\{Y(s)\}$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}+\mathcal{L}^{-1}\left\{\frac{2}{(s+2)^{2}}\right\} \\
& =\frac{1}{3!} t^{3} e^{-2 t}+e^{-2 t}+2 t e^{-2 t}
\end{aligned}
$$

November 9, 2018

Solve the IVP

An LR-series circuit has inductance $L=1 \mathrm{~h}$, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

LR Circuit Example
In terms of step functions

$$
\begin{aligned}
E(t) & =0-o u(t-1)+E_{0} u(t-1)-E_{0} u(t-3)+o u(t-3) \\
& =E_{0} u(t-1)-E_{0} u(t-3)
\end{aligned}
$$

The ISP to solve is

$$
\begin{gathered}
\frac{d i}{d t}+10 i=E_{0} u(t-1)-E_{0} u(t-3) \\
i(0)=0
\end{gathered}
$$

* The basic equation is

$$
L \frac{d i}{d t}+R i=E
$$

well finish this next time!

Let's do one together

Solve the IVP using Laplace transforms.
$y^{\prime \prime}+9 y=36, \quad y(0)=2 \quad y^{\prime}(0)=-1$
Take the Laplace transform of both sides applying the transform property for the derivatives, and substituting in the initial conditions.

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}+9 \mathcal{L}\{y\}=\mathcal{L}\{36\} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+9 Y(s)=\frac{36}{s} \\
& s^{2} Y(s)-2 s+1+9 Y(s)=\frac{36}{s}
\end{aligned}
$$

$$
y^{\prime \prime}+9 y=36, \quad y(0)=2 \quad y^{\prime}(0)=-1
$$

At this point we have

$$
s^{2} Y(s)-2 s+1+9 Y(s)=\frac{36}{s}
$$

Now isolate $Y(s)$

$$
\begin{aligned}
\left(s^{2}+9\right) Y(s) & =\frac{36}{s}+2 s-1 \\
Y(s) & =\frac{36}{s\left(s^{2}+9\right)}+\frac{2 s-1}{s^{2}+9} \\
& =\frac{36}{s\left(s^{2}+9\right)}+\frac{2 s}{s^{2}+9}-\frac{1}{s^{2}+9}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}+9 y=36, \quad y(0)=2 \quad y^{\prime}(0)=-1 \\
& Y(s)=\frac{36}{s\left(s^{2}+9\right)}+\frac{2 s}{s^{2}+9}-\frac{1}{s^{2}+9}
\end{aligned}
$$

Do any necessary partial fraction decomposition, and collect any like terms.

$$
\begin{array}{rlrl}
\frac{36}{s\left(s^{2}+9\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+9} & A & =4 \\
36 & =A\left(s^{2}+9\right)+(B s+C) s & C & =-4 \\
& =(A+B) s^{2}+C s+9 A \\
Y(s) & =\frac{4}{s}-\frac{4 s}{s^{2}+9}+\frac{2 s}{s^{2}+9}-\frac{1}{s^{2}+9} \\
& =\frac{4}{s}-\frac{2 s}{s^{2}+9}-\frac{1}{s^{2}+9}
\end{array}
$$

$$
y^{\prime \prime}+9 y=36, \quad y(0)=2 \quad y^{\prime}(0)=-1
$$

At this point, we have

$$
Y(s)=\frac{4}{s}-\frac{2 s}{s^{2}+9}-\frac{1}{s^{2}+9}
$$

Finally take the inverse transform to find the solution $y(t)$ to the IVP.

$$
y(t)=4-2 \cos (3 t)-\frac{1}{3} \sin (3 t)
$$

Verity:

$$
\begin{array}{rlrl}
\text { Verity: } \quad y^{\prime} & =6 \sin (3 t)-\cos (3 t) & y(0)=4-2-0=2 \\
y^{\prime \prime} & =18 \cos (3 t)+3 \sin (3 t) & y^{\prime}(0)=6 \cdot 0-1=-1 \\
y^{\prime \prime}+9 y & =18 \cos (3 t)+3 \sin (3 t)+9\left(4-2 \cos (3 t)-\frac{1}{3} \sin (3 t)\right) \\
& =18 \cos (3 t)+3 \sin (3 t)+36-18 \cos (3 t)-3 \sin (3 t)=36
\end{array}
$$

