November 13 Math 2306 sec. 53 Fall 2019

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose f has a Laplace transform! and that f is differentiable on
[0, 00). Obtain an expression for the Laplace tranform of f/(t).
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"Assume f is of exponential order ¢ for some ¢. ¢
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Transforms of Derivatives

If £ {f(t)} = F(s), we have Z {f'(t)} = sF(s) — f(0). We can use this
relationship recursively to obtain Laplace transforms for higher
derivatives of f.

For example
Z2{f"(t)} = sL{f(t)}-r(0)
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Transforms of Derivatives

For y = y(t) defined on [0, c0) having derivatives y’, y” and so forth, if

Z{y(t)} = Y(s),

then 4
7 {d{} — s¥(s) — y(0),

&z { d”y} =5"Y(s) =" y(0) = s"2y/(0) — - - — y""(0).

November 11, 2019 3/26



Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of
the equation

ay’ + by +cy= g(t), y(0) =y, y’(O) —y,
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Solving IVPs

Apply Laplace

Transform

/ Solution
y(t)
(obtained unknown
from ¥(s)) ¥(s) /
/Solution
Y(s)
Take Inverse Laplace (obtained
Transform

by
algebra)

Figure: We use the Laplace transform to turn our DE into an algebraic

equation. Solve this transformed equation, and then trans;orm back.
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General Form

We get
Q(s) , G(s)
Y(s) =
9= B " P(s)
where Q is a polynomial with coefficients determined by the initial
conditions, G is the Laplace transform of g(t) and P is the
characteristic polynomial of the original equation.

z1 { ggzg } is called the zero input response,

7 { ggzi } is called the zero state response.
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