November 13 Math 2306 sec 54 Fall 2015

Section 11.1: (Brief Overview of Inner Product and Orthogonality)

Suppose two functions f and g are integrable on the interval [a, b]. We define the **inner product** of f and g on [a, b] as

$$\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$$

We say that f and g are **orthogonal** on [a, b] if

$$< f, g > = 0.$$

The product depends on the interval, so the orthogonality of two functions depends on the interval.

Properties of an Inner Product

Let f, g, and h be integrable functions on the appropriate interval and let c be any real number. The following hold

(i)
$$< f, g > = < g, f >$$

(ii)
$$< f, g + h > = < f, g > + < f, h >$$

(iii)
$$< cf, g >= c < f, g >$$

(iv)
$$\langle f, f \rangle \geq 0$$
 and $\langle f, f \rangle = 0$ if and only if $f = 0$

Orthogonal Set

A set of functions $\{\phi_0(x), \phi_1(x), \phi_2(x), \ldots\}$ is said to be **orthogonal** on an interval [a, b] if

$$<\phi_m,\phi_n>=\int_a^b\phi_m(x)\phi_n(x)\,dx=0$$
 whenever $m\neq n$.

Note that any function $\phi(x)$ that is not identically zero will satisfy

$$<\phi,\phi>=\int_{a}^{b}\phi^{2}(x)\,dx>0.$$

Hence we define the **square norm** of ϕ (on [a, b]) to be

$$\|\phi\| = \sqrt{\int_a^b \phi^2(x) \, dx}.$$

An Orthogonal Set of Functions

Consider the set of functions

$$\{1, \cos x, \cos 2x, \cos 3x, \dots, \sin x, \sin 2x, \sin 3x, \dots\}$$
 on $[-\pi, \pi]$.

Show that $\phi_0(x) = 1$, is orthogonal to every function of the form $\cos nx$ or $\sin mx$ for all $n \ge 1$ or $m \ge 1$ on $[-\pi, \pi]$.

$$\langle 1, Cos(nx) \rangle = \int_{-\pi}^{\pi} 1 \cdot Cos(nx) dx = \frac{1}{n} Sin(nx) \Big|_{-\pi}^{\pi}$$

$$\frac{1}{n} \cdot Sin(n\pi) = 0$$

$$= \frac{1}{n} Sin(n\pi) - \frac{1}{n} Sin(-n\pi) = 0 - 0 = 0$$

$$= \frac{1}{n} Sin(n\pi) - \frac{1}{n} Sin(-n\pi) = 0 - 0 = 0$$
Hence 1 and Cos(nx) are orthogonal for any $n \ge 1$.

$$\langle 1, Sin(mx) \rangle = \int_{-\pi}^{\pi} 1 \cdot Sin(mx) dx = \frac{1}{m} Cos(mx) \int_{-\pi}^{\pi}$$

Also
$$Cos(m\pi) = \begin{cases} -1, modd \\ 1, meven \end{cases}$$

$$= (-1)^{m}$$

$$= \frac{1}{m} \cos(m\pi) + \frac{1}{m} \cos(m\pi) = 0$$

An Orthogonal Set of Functions continued...

Use the fact that sin mx is an odd function and cos nx is an even function for any choice of m and n to show that

$$\int_{-\pi}^{\pi} \cos nx \sin mx \, dx = 0 \quad \text{for all} \quad m, n \ge 1.$$

$$|\cos(-nx)| \sin(-mx) = \cos(nx) \left[-\sin(mx)\right]$$

$$|\cos(-nx)| \sin(-mx) = \cos(nx) \left[-\sin(mx)\right]$$

$$= -\cos(nx) \sin(mx)$$

$$= -\cos(nx) \cos(nx)$$

$$= -\cos(nx) \sin(nx)$$

$$= -\cos(nx) \sin(nx)$$

$$= -\cos(nx) \cos(nx)$$

$$= -\cos(nx)$$

$$=$$

So Cos(nx) and fin(mx) are orthogonal for all n,m 7,1.