November 14 MATH 1113 sec. 51 Fall 2018

Section 7.4: Inverse Trigonometric Functions

Definition (The Inverse Sine Function): For *x* in the interval [-1, 1] the inverse sine of *x* is denoted by either

$$\sin^{-1}(x)$$
 or $\arcsin(x)$

and is defined by the relationship

$$y = \sin^{-1}(x) \iff x = \sin(y)$$
 where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

The inverse sine function is also called the *arcsine function*.

que I and

イロト イポト イラト イラト

Conceptual Definition¹

We can think of the inverse sine function in the following way:

 $\sin^{-1}(x)$ is the *angle* between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

¹We want to consider $f(x) = \sin^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a **very useful** conceptual device for working with and evaluating this function $x \in \mathbb{R}$ and $x = -\infty$

Example

Evaluate each expression exactly.

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$
 become $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$
and $\frac{\pi}{2} \in \frac{\pi}{4} \in \frac{\pi}{2}$

(b)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$
 Since $\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$
and $\frac{-\pi}{2} \in -\frac{\pi}{3} \in \frac{\pi}{2}$

Question

Recall that sin(x) = 1 for $x = -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots, \frac{\pi}{2} + 2k\pi$, for integers *k*. And the range of the inverse sine is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

イロト イポト イヨト イヨト

November 14, 2018

4/30

The value of $\sin^{-1} 1$ is

(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2}$ and $\frac{5\pi}{2}$ (c) 0

(d) 0 and π

The Graph of the Arcsine

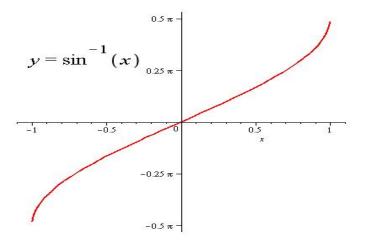


Figure: Note that the domain is $-1 \le x \le 1$ and the range is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\sin\left(\sin^{-1}(x)
ight)=x$$

For every *x* in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\sin^{-1}\left(\sin(x)\right)=x$

Remark 1: If x > 1 or x < -1, the expression $\sin^{-1}(x)$ is not defined.

November 14, 2018

6/30

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\sin^{-1}(\sin(x))$ IS defined, but IS NOT equal to *x*.

Example

Evaluate each expression if possible. If it is not defined, give a reason.

(a)
$$\sin^{-1}\left[\sin\left(\frac{\pi}{8}\right)\right] = \frac{\pi}{8}$$
 $-\frac{\pi}{2} \leq \frac{\pi}{9} \leq \frac{\pi}{2}$

(b)
$$\sin^{-1}\left[\sin\left(\frac{4\pi}{3}\right)\right]$$

= $\sin^{-1}\left(-\frac{5\pi}{2}\right) = -\frac{5\pi}{3}$

イロト イヨト イヨト イヨト

November 14, 2018 7 / 30

Question

Recall that $\sin \frac{\pi}{6} = \frac{1}{2}$ and $\sin \frac{5\pi}{6} = \frac{1}{2}$. And the range of the arcsine function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\sin^{-1}\left[\sin\frac{5\pi}{6}\right] = \sin^{-1}\left(\frac{1}{2}\right)$$
$$= \frac{\pi}{6}$$

(a)
$$\frac{5\pi}{6}$$

(b) $\frac{\pi}{6}$
(c) $-\frac{\pi}{6}$
(d) $\frac{1}{2}$
(e) $-\frac{1}{2}$

November 14, 2018 8 / 30

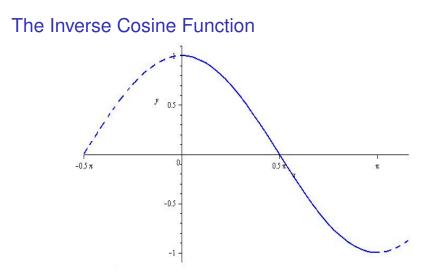


Figure: To define an inverse cosine function, we start by restricting the domain of cos(x) to the interval $[0, \pi]$

Image: A matrix

November 14, 2018

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval [-1, 1] the inverse cosine of x is denoted by either

$$\cos^{-1}(x)$$
 or $\arccos(x)$
and is defined by the relationship

 $y = \cos^{-1}(x) \iff x = \cos(y)$ where $0 \le y \le \pi$.

November 14, 2018

10/30

The Domain of the Inverse Cosine is -1 < x < 1.

The Range of the Inverse Cosine is $0 < y < \pi$.

The Graph of the Arccosine

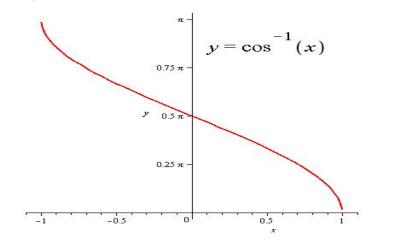


Figure: Note that the domain is $-1 \le x \le 1$ and the range is $0 \le y \le \pi$.

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\cos\left(\cos^{-1}(x)\right) = x$$

For every x in the interval $[0, \pi]$

 $\cos^{-1}(\cos(x)) = x$

Remark 1: If x > 1 or x < -1, the expression $\cos^{-1}(x)$ is not defined.

Remark 2: If $x > \pi$ or x < 0, the expression $\cos^{-1}(\cos(x))$ IS defined, but IS NOT equal to x.

> November 14, 2018

Conceptual Definition

We can think of the inverse cosine function in the following way:

 $\cos^{-1}(x)$ is the *angle* between 0 and π whose cosine is *x*.

Examples

Evaluate each expression exactly.

(a)
$$\cos^{-1}(0) = \frac{\pi}{2}$$
 because $\cos \frac{\pi}{2} = 0$ and $0 \le \frac{\pi}{2} \le \pi$

(b)
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$
 because $\cos^{2\pi} = -\frac{1}{2}$
and $0 \le \frac{2\pi}{3} \le \pi$

<ロ ト < 回 ト < 臣 ト < 臣 ト 三 の へ ペ November 14, 2018 14 / 30 Question Recall $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.

The exact value of
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) =$$

(Remember the range is $[0, \pi]$.)

(a)
$$\frac{\pi}{4}$$

(b) $-\frac{\pi}{4}$
(c) $\frac{3\pi}{4}$
(d) $-\frac{3\pi}{4}$

November 14, 2018 15 / 30

<ロト <回 > < 回 > < 回 > < 回 > … 回

Evaluate the expression exactly

$$\cos^{-1}\left[\cos\left(\frac{9\pi}{8}\right)\right] = \frac{7\pi}{8} \qquad \text{Range for accosing} \\ \text{is } \left[o,\pi\right] \\ \text{and } \frac{9\pi}{8} > \pi \\ \text{This is the grad rand II} \\ \text{angle whose reference} \\ \text{cngle is } \frac{1}{8} \\ \text{Cos}\left(\frac{7\pi}{8}\right) = \cos\left(\frac{9\pi}{8}\right) \qquad \text{Range for accosing} \\ \frac{9\pi}{8} > \pi \\ \frac{$$

<ロト <回 > < 回 > < 回 > < 回 > … 回

The Inverse Tangent Function

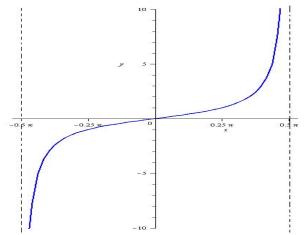


Figure: To define an inverse tangent function, we start by restricting the domain of tan(x) to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers *x*, the inverse tangent of *x* is denoted by

. .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 November 14, 2018

18/30

$$\tan^{-1}(x)$$
 or by $\arctan(x)$
and is defined by the relationship
 $y = \tan^{-1}(x) \iff x = \tan(y)$ where $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

The Domain of the Inverse Tangent is $-\infty < x < \infty$.

The Range of the Inverse Cosine is $-\frac{\pi}{2} < y < \frac{\pi}{2}$ (Note the strict inequalities.).

The Graph of the Arctangent

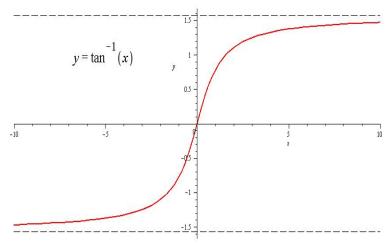


Figure: The domain is all real numbers and the range is $-\frac{\pi}{2} < y < \frac{\pi}{2}$. The graph has two horizontal asymptotes $y = -\frac{\pi}{2}$ and $y = \frac{\pi}{2}$.

Function/Inverse Function Relationship

For all real numbers x

$$\tan\left(\tan^{-1}(x)\right) = x$$

For every x in the interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

 $\tan^{-1}(\tan(x)) = x$

Remark 1:The expression $\tan^{-1}(x)$ is always well defined.

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\tan^{-1}(\tan(x))$ MAY BE defined, but IS NOT equal to x.

> イロト 不得 トイヨト イヨト ヨー ろくの November 14, 2018

Conceptual Definition

We can think of the inverse tangent function in the following way:

 $\tan^{-1}(x)$ is the *angle* between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

Examples

Evaluate each expression exactly.

(a)
$$\tan^{-1}(-1) = \frac{\pi}{4}$$
 since $\tan\left(-\frac{\pi}{4}\right) = -1$
and $-\frac{\pi}{2} < -\frac{\pi}{4} < \frac{\pi}{2}$

(b) $\tan^{-1}(0) = 0$

 $trn(o) = 0 \quad \text{and} \quad \frac{\pi}{2} < 0 < \frac{\pi}{2}$

November 14, 2018 22 / 30

<ロ> <四> <四> <四> <四> <四</p>

Combining Functions

Evaluate each expression exactly if possible. If it is undefined, provide a reason.

(a)
$$\tan\left[\arcsin\left(\frac{1}{2}\right)\right]$$

$$= \operatorname{tr}\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$$

 $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ $\begin{aligned} & |f \quad \Theta = \sin^{-1}\left(\frac{1}{2}\right) \quad \text{then} \\ & -\frac{\pi}{2} \le \Theta \le \frac{\pi}{2} \end{aligned}$ 0

November 14, 2018

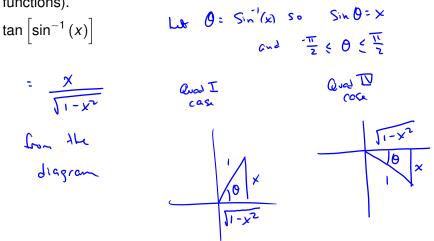
(b)
$$\sin\left[\tan^{-1}\left(\frac{1}{4}\right)\right]$$

 $= \frac{1}{\sqrt{17}}$
from the
diagram
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$
 $\frac{1}{\sqrt{10}}$

・ロト・西ト・ヨト・ヨー つくぐ November 14, 2018

Algebraic Expressions

Write the expression purely algebraically (with no trigonometric functions).



Recap: Inverse Sine, Cosine, and Tangent

Function	Domain	Range		T + IL
$\sin^{-1}(x)$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	+ quod	
$\cos^{-1}(x)$	[-1,1]	[0 , π]	6 9002	I and II
$\tan^{-1}(x)$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	ج ک مرم	I and IV

November 14, 2018 26 / 30

<ロ> <四> <四> <四> <四> <四</p>

Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is **typically** defined for all real numbers *x* by

$$y = \cot^{-1}(x) \iff x = \cot(y) \text{ for } 0 < y < \pi.$$

There is less consensus regarding the inverse secant and cosecant functions.

November 14, 2018

A Work-Around

We can use the fact that $\sec \theta = \frac{1}{\cos \theta}$ to find an expression for $\sec^{-1}(x)$. Suppose that

$$y = \sec^{-1}(x)$$
 and $x = \sec(y)$.

Then

$$\frac{1}{x} = \cos(y)$$
 so that $y = \cos^{-1}\left(\frac{1}{x}\right)$.

That is

$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right)$$

Use your result to compute (an acceptable value for) $\sec^{-1}(\sqrt{2})$

$$C_{0S}\left(\frac{1}{\Gamma_{2}}\right) = \frac{\Gamma_{1}}{\gamma} \quad SS \quad Sec'(\Gamma_{2}) = \frac{\Gamma_{1}}{\gamma}$$

イロト 不得 トイヨト イヨト 二日

A Work-Around

We can use the following compromise to compute inverse cotangent, secant, and cosecant values²:

For those values of x for which each side of the equation is defined

$$\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right),$$
$$\csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right),$$
$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right).$$

²Keep in mind that there is disagreement about the ranges! () () ()

Question

True/False: Since $\cot \theta = \frac{1}{\tan \theta}$, it must be that $\cot^{-1} x = \frac{1}{\tan^{-1} x}$.

(a) True, and I'm confident.

(b) True, but I'm not confident.

(c) False, and I'm confident.(d) False, but I'm not confident.

 $\int dx^{+} (x) \neq \int dx^{-} x$