November 14 MATH 1113 sec. 52 Fall 2018

Section 7.4: Inverse Trigonometric Functions

Definition (The Inverse Sine Function): For x in the interval [-1, 1] the inverse sine of x is denoted by either

$$\sin^{-1}(x)$$
 or $\arcsin(x)$

Jod and

and is defined by the relationship

$$y = \sin^{-1}(x) \iff x = \sin(y) \text{ where } -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$$

The inverse sine function is also called the *arcsine function*.

Conceptual Definition¹

We can think of the inverse sine function in the following way:

 $\sin^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

We want to consider $f(x) = \sin^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a **very useful** conceptual device for working with and evaluating this function.

Example

Evaluate each expression exactly.

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{T}{4}$$
 becomes $\sin\frac{T}{4} = \frac{1}{12}$ and $-\frac{T}{2} \leq \frac{T}{4} \leq \frac{T}{2}$

(b)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$$
 because $\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$ and $-\frac{\pi}{2} \le \frac{\pi}{3} \le \frac{\pi}{2}$

Question

Recall that $\sin(x)=1$ for $x=-\frac{3\pi}{2},\frac{\pi}{2},\frac{5\pi}{2},\frac{9\pi}{2},\ldots,\frac{\pi}{2}+2k\pi$, for integers k. And the range of the inverse sine is $[-\frac{\pi}{2},\frac{\pi}{2}]$

The value of sin⁻¹ 1 is

- (b) $\frac{\pi}{2}$ and $\frac{5\pi}{2}$
- (c) 0
- (d) 0 and π

The Graph of the Arcsine

Figure: Note that the domain is $-1 \le x \le 1$ and the range is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\sin\left(\sin^{-1}(x)\right) = x$$

For every x in the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

$$\sin^{-1}\left(\sin(x)\right)=x$$

Remark 1: If x > 1 or x < -1, the expression $\sin^{-1}(x)$ is not defined.

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\sin^{-1}(\sin(x))$ IS defined, but IS NOT equal to x.

Example

Evaluate each expression if possible. If it is not defined, give a reason.

(a)
$$\sin^{-1}\left[\sin\left(\frac{\pi}{8}\right)\right] = \frac{17}{8}$$

(b)
$$\sin^{-1}\left[\sin\left(\frac{4\pi}{3}\right)\right]$$

$$= \sin^{-1}\left(\frac{-13}{2}\right) = -\frac{\pi}{3}$$

$$= \sin^{-1}\left(\frac{-13}{2}\right) = -\frac{\pi}{3}$$

$$= \sin^{-1}\left(\frac{-13}{2}\right) = -\frac{\pi}{3}$$

$$= \sin^{-1}\left(\frac{-13}{3}\right) = -\frac{\pi}{3}$$

$$= \cos^{-1}\left(\frac{-13}{3}\right) = -\frac{\pi}{3}$$

Question

Recall that $\sin \frac{\pi}{6} = \frac{1}{2}$ and $\sin \frac{5\pi}{6} = \frac{1}{2}$. And the range of the arcsine function is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

$$\sin^{-1}\left[\sin\frac{5\pi}{6}\right] = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

- (a) $\frac{5\pi}{6}$
- (b) $\frac{\pi}{6}$
- (c) $-\frac{\pi}{6}$
- (d) $\frac{1}{2}$
- (e) $-\frac{1}{2}$

The Inverse Cosine Function

Figure: To define an inverse cosine function, we start by restricting the domain of $\cos(x)$ to the interval $[0, \pi]$

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval [-1,1] the inverse cosine of x is denoted by either

$$\cos^{-1}(x)$$
 or $\arccos(x)$

and is defined by the relationship

$$y = \cos^{-1}(x) \iff x = \cos(y) \text{ where } 0 \le y \le \pi.$$

The Domain of the Inverse Cosine is -1 < x < 1.

The Range of the Inverse Cosine is $0 \le y \le \pi$.

The Graph of the Arccosine

Figure: Note that the domain is $-1 \le x \le 1$ and the range is $0 \le y \le \pi$.

Function/Inverse Function Relationship

For every x in the interval [-1, 1]

$$\cos\left(\cos^{-1}(x)\right)=x$$

For every x in the interval $[0, \pi]$

$$\cos^{-1}\left(\cos(x)\right)=x$$

Remark 1: If x > 1 or x < -1, the expression $\cos^{-1}(x)$ is not defined.

Remark 2: If $x > \pi$ or x < 0, the expression $\cos^{-1}(\cos(x))$ IS defined, but IS NOT equal to x.

Conceptual Definition

We can think of the inverse cosine function in the following way:

 $\cos^{-1}(x)$ is the *angle* between 0 and π whose cosine is x.

Examples

Evaluate each expression exactly.

(a)
$$\cos^{-1}(0) = \frac{\pi}{2}$$
 Since $\cos \frac{\pi}{2} = 0$ and $0 \le \frac{\pi}{2} \le \pi$

(b)
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$
 Since $\cos^{\frac{2\pi}{3}} = \frac{1}{2}$ and $\cos^{\frac{2\pi}{3}} \leq \pi$

Question

Recall
$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
.

The exact value of
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) =$$

(Remember the range is $[0, \pi]$.)

(a)
$$\frac{\pi}{4}$$

(b)
$$-\frac{\pi}{4}$$

(c)
$$\frac{3\pi}{4}$$

(d)
$$-\frac{3\pi}{4}$$

Evaluate the expression exactly

$$\cos^{-1}\left[\cos\left(\frac{9\pi}{8}\right)\right]$$

Sin a
$$Cos\left(\frac{5\pi}{8}\right) = Cos\left(\frac{7\pi}{8}\right)$$
and $0 \le \frac{7\pi}{8} \le \pi$

The Inverse Tangent Function

Figure: To define an inverse tangent function, we start by restricting the domain of $\tan(x)$ to the interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers x, the inverse tangent of x is denoted by

$$tan^{-1}(x)$$
 or by $arctan(x)$

2 So on

and is defined by the relationship

$$y = \tan^{-1}(x) \iff x = \tan(y) \text{ where } -\frac{\pi}{2} < y < \frac{\pi}{2}.$$

The Domain of the Inverse Tangent is $-\infty < x < \infty$.

The Range of the Inverse Cosine is $-\frac{\pi}{2} < y < \frac{\pi}{2}$ (Note the strict inequalities.).

The Graph of the Arctangent

Figure: The domain is all real numbers and the range is $-\frac{\pi}{2} < y < \frac{\pi}{2}$. The graph has two horizontal asymptotes $y = -\frac{\pi}{2}$ and $y = \frac{\pi}{2}$.

Function/Inverse Function Relationship

For all real numbers x

$$\tan\left(\tan^{-1}(x)\right) = x$$

For every x in the interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

$$\tan^{-1}\left(\tan(x)\right)=x$$

Remark 1:The expression $tan^{-1}(x)$ is always well defined.

Remark 2: If $x > \frac{\pi}{2}$ or $x < -\frac{\pi}{2}$, the expression $\tan^{-1}(\tan(x))$ MAY BE defined, but IS NOT equal to x.

Conceptual Definition

We can think of the inverse tangent function in the following way:

 $\tan^{-1}(x)$ is the *angle* between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

Examples

Evaluate each expression exactly.

(a)
$$\tan^{-1}(-1) = -\frac{\pi}{4}$$
 Since $\tan\left(\frac{\pi}{4}\right) = -1$ and $-\frac{\pi}{2} < -\frac{\pi}{4} < \frac{\pi}{2}$

(b)
$$\tan^{-1}(0) = 0$$
 $\tan^{-1}(0) = 0$ $\tan^{-1}(0) = 0$ $\tan^{-1}(0) = 0$

Combining Functions

(a)
$$\tan \left[\arcsin \left(\frac{1}{2} \right) \right]$$

$$= \lim_{n \to \infty} \left(\frac{\pi}{6} \right) = \frac{1}{\sqrt{3}}$$

Let
$$\theta = \sin^{-1} \frac{1}{2}$$
 My,
 $-\frac{\pi}{2} \stackrel{?}{=} 0 \stackrel{?}{=} \frac{\pi}{2}$ and $\sin \theta = \frac{1}{2}$
 $\sin \theta > 0 \implies 0$ is grad I

(b)
$$\sin \left[\tan^{-1} \left(\frac{1}{4} \right) \right]$$

Algebraic Expressions

Write the expression purely algebraically (with no trigonometric functions).

$$\tan\left[\sin^{-1}(x)\right]$$

Let
$$\theta = \sin^{-1}(x)$$
 so $\sin \theta = x$ and $-\pi h \leq \theta \leq \frac{\pi}{2}$

Recap: Inverse Sine, Cosine, and Tangent

Function	Domain	Range
$\sin^{-1}(x)$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1}(x)$	[-1,1]	$oxed{[0,\pi]}$
$tan^{-1}(x)$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is **typically** defined for all real numbers *x* by

$$y = \cot^{-1}(x) \iff x = \cot(y) \text{ for } 0 < y < \pi.$$

There is less consensus regarding the inverse secant and cosecant functions.

A Work-Around

We can use the fact that $\sec \theta = \frac{1}{\cos \theta}$ to find an expression for $\sec^{-1}(x)$. Suppose that

$$y = \sec^{-1}(x)$$
 and $x = \sec(y)$.

Then

$$\frac{1}{x} = \cos(y)$$
 so that $y = \cos^{-1}\left(\frac{1}{x}\right)$.

That is

$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right).$$

Use your result to compute (an acceptable value for) $\sec^{-1}(\sqrt{2})$

A Work-Around

We can use the following compromise to compute inverse cotangent, secant, and cosecant values²:

For those values of x for which each side of the equation is defined

$$\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right),\,$$

$$\csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right),\,$$

$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right).$$

²Keep in mind that there is disagreement about the ranges! ← ≥ → ← ≥ → ∞ へ ←

Question

True/False: Since
$$\cot \theta = \frac{1}{\tan \theta}$$
, it must be that $\cot^{-1} x = \frac{1}{\tan^{-1} x}$.

(a) True, and I'm confident.

Cobia = teni (1/x)

- (b) True, but I'm not confident.
- (c) False, and I'm confident.(d) False, but I'm not confident.

