November 14 MATH 1113 sec. 52 Fall 2018

Section 7.4: Inverse Trigonometric Functions

Definition (The Inverse Sine Function): For x in the interval $[-1,1]$ the inverse sine of x is denoted by either

$$
\sin ^{-1}(x) \text { or } \arcsin (x)
$$

and is defined by the relationship

$$
y=\sin ^{-1}(x) \quad \Longleftrightarrow \quad x=\sin (y) \quad \text { where } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} .
$$

The inverse sine function is also called the arcsine function.

Conceptual Definition ${ }^{1}$

We can think of the inverse sine function in the following way: $\sin ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

[^0]Example
Evaluate each expression exactly.
(a) $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4} \quad$ because $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ and $-\frac{\pi}{2} \leq \frac{\pi}{4} \leq \frac{\pi}{2}$
(b) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{-\pi}{3} \quad$ because $\sin \left(\frac{-\pi}{3}\right)=\frac{-\sqrt{3}}{2}$ and $-\frac{\pi}{2} \leq \frac{-\pi}{3} \leq \frac{\pi}{2}$

Question

Recall that $\sin (x)=1$ for $x=-\frac{3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots, \frac{\pi}{2}+2 k \pi$, for integers k. And the range of the inverse sine is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

The value of $\sin ^{-1} 1$ is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$
(c) 0
(d) 0 and π

The Graph of the Arcsine

Figure: Note that the domain is $-1 \leq x \leq 1$ and the range is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Function/Inverse Function Relationship

For every x in the interval $[-1,1]$

$$
\sin \left(\sin ^{-1}(x)\right)=x
$$

For every x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin ^{-1}(\sin (x))=x
$$

Remark 1: If $x>1$ or $x<-1$, the expression $\sin ^{-1}(x)$ is not defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\sin ^{-1}(\sin (x))$ IS defined, but IS NOT equal to x.

Example
Evaluate each expression if possible. If it is not defined, give a reason.
(a) $\sin ^{-1}\left[\sin \left(\frac{\pi}{8}\right)\right]=\frac{\pi}{8}$

$$
\frac{-\pi}{2} \leq \frac{\pi}{8} \leq \frac{\pi}{2}
$$

(b) $\sin ^{-1}\left[\sin \left(\frac{4 \pi}{3}\right)\right]$

$$
=\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=-\frac{\pi}{3}
$$

$$
\begin{aligned}
\frac{4 \pi}{3} & >\frac{\pi}{2} \\
\sin \left(\frac{4 \pi}{3}\right) & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

* Note $\frac{4 \pi}{3}$ and $\frac{-\pi}{3}$ have reference angle $\pi / 3$

Question

Recall that $\sin \frac{\pi}{6}=\frac{1}{2}$ and $\sin \frac{5 \pi}{6}=\frac{1}{2}$. And the range of the arcsine function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$
\sin ^{-1}\left[\sin \frac{5 \pi}{6}\right]=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

The Inverse Cosine Function

Figure: To define an inverse cosine function, we start by restricting the domain of $\cos (x)$ to the interval $[0, \pi]$

The Inverse Cosine Function (a.k.a. arccosine function)

Definition: For x in the interval $[-1,1]$ the inverse cosine of x is denoted by either

$$
\cos ^{-1}(x) \text { or } \arccos (x)
$$

and is defined by the relationship

$$
y=\cos ^{-1}(x) \quad \Longleftrightarrow \quad x=\cos (y) \quad \text { where } \quad 0 \leq y \leq \pi
$$

The Domain of the Inverse Cosine is $-1 \leq x \leq 1$.
The Range of the Inverse Cosine is $0 \leq y \leq \pi$.

The Graph of the Arccosine

Figure: Note that the domain is $-1 \leq x \leq 1$ and the range is $0 \leq y \leq \pi$.

Function/Inverse Function Relationship

For every x in the interval $[-1,1]$

$$
\cos \left(\cos ^{-1}(x)\right)=x
$$

For every x in the interval $[0, \pi]$

$$
\cos ^{-1}(\cos (x))=x
$$

Remark 1: If $x>1$ or $x<-1$, the expression $\cos ^{-1}(x)$ is not defined.
Remark 2: If $x>\pi$ or $x<0$, the expression $\cos ^{-1}(\cos (x))$ IS defined, but IS NOT equal to x.

Conceptual Definition

We can think of the inverse cosine function in the following way:
$\cos ^{-1}(x)$ is the angle between 0 and π whose cosine is x.

Examples
Evaluate each expression exactly.
(a) $\cos ^{-1}(0)=\frac{\pi}{2} \quad \sin c e \quad \cos \frac{\pi}{2}=0$ and $0 \leqslant \frac{\pi}{2} \leqslant \pi$
(b) $\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3} \quad \sin u \quad \cos \frac{2 \pi}{3}=\frac{-1}{2}$ and $0 \leq \frac{2 \pi}{3} \leq \pi$

Question

Recall $\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$.
The exact value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=$ (Remember the range is $[0, \pi]$.)
(a) $\frac{\pi}{4}$
(b) $-\frac{\pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $-\frac{3 \pi}{4}$

Evaluate the expression exactly

$$
\frac{9 \pi}{8}>\pi
$$

$$
\begin{gathered}
\cos ^{-1}\left[\cos \left(\frac{9 \pi}{8}\right)\right] \\
=\frac{7 \pi}{8}
\end{gathered}
$$

If $\theta=\frac{9 \pi}{8}$ then $\theta^{\prime}=\frac{\pi}{8}$ and $\frac{9 \pi}{8}$ is in quad TI I
where cosine in regotive

Since

$$
\cos \left(\frac{9 \pi}{8}\right)=\cos \left(\frac{7 \pi}{8}\right)
$$

and $0 \leq \frac{7 \pi}{8} \leq \pi$

The Inverse Tangent Function

Figure: To define an inverse tangent function, we start by restricting the domain of $\tan (x)$ to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (Note the end points are NOT included!)

The Inverse Tangent Function (a.k.a. arctangent function)

Definition: For all real numbers x, the inverse tangent of x is denoted by

$$
\tan ^{-1}(x) \text { or by } \arctan (x)
$$

and is defined by the relationship

$$
y=\tan ^{-1}(x) \quad \Longleftrightarrow \quad x=\tan (y) \text { where }-\frac{\pi}{2}<y<\frac{\pi}{2} .
$$

The Domain of the Inverse Tangent is $-\infty<x<\infty$.
The Range of the Inverse Cosine is $-\frac{\pi}{2}<y<\frac{\pi}{2}$ (Note the strict inequalities.).

The Graph of the Arctangent

Figure: The domain is all real numbers and the range is $-\frac{\pi}{2}<y<\frac{\pi}{2}$. The graph has two horizontal asymptotes $y=-\frac{\pi}{2}$ and $y=\frac{\pi}{2}$.

Function/Inverse Function Relationship

For all real numbers x

$$
\tan \left(\tan ^{-1}(x)\right)=x
$$

For every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\tan ^{-1}(\tan (x))=x
$$

Remark 1:The expression $\tan ^{-1}(x)$ is always well defined.
Remark 2: If $x>\frac{\pi}{2}$ or $x<-\frac{\pi}{2}$, the expression $\tan ^{-1}(\tan (x))$ MAY BE defined, but IS NOT equal to x.

Conceptual Definition

We can think of the inverse tangent function in the following way: $\tan ^{-1}(x)$ is the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose tangent is x.

Examples
Evaluate each expression exactly.
(a) $\tan ^{-1}(-1)=\frac{-\pi}{4} \quad$ since $\quad \tan \left(\frac{-\pi}{4}\right)=-1$ and $-\frac{\pi}{2}<-\frac{\pi}{4}<\frac{\pi}{2}$
(b) $\tan ^{-1}(0)=0 \quad \tan (0)=0$ and

$$
-\frac{\pi}{2}<0<\frac{\pi}{2}
$$

Combining Functions
Evaluate each expression exactly if possible. If it is undefined, provide a reason.

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

(a) $\tan \left[\arcsin \left(\frac{1}{2}\right)\right]$

$$
=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}
$$

Let $\theta=\sin ^{-1} \frac{1}{2}$ then

$$
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \text { and } \sin \theta=\frac{1}{2}
$$

$$
\sin \theta>0 \Rightarrow \theta_{\text {is quad }} I
$$

We can read
the tangent from the triangle

(b) $\sin \left[\tan ^{-1}\left(\frac{1}{4}\right)\right]$

Let $\theta=\tan ^{-1} \frac{1}{4}$ so $\tan \theta=\frac{1}{4}$ and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$=\frac{1}{\sqrt{17}}$
from the diagron
$\tan \theta>0 \quad \theta$ is in quod I

Algebraic Expressions
Write the expression purely algebraically (with no trigonometric functions).
$\tan \left[\sin ^{-1}(x)\right]$

$$
=\frac{x}{\sqrt{1-x^{2}}}
$$

Let $\theta=\sin ^{-1}(x)$ so $\sin \theta=x$ and

$$
-\pi / 2 \leq \theta \leq \frac{\pi}{2}
$$

Quod I
case

Recap: Inverse Sine, Cosine, and Tangent

Function	Domain	Range
$\sin ^{-1}(x)$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1}(x)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(x)$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Three Other Inverse Trigonometric Functions

There is disagreement about how to define the ranges of the inverse cotangent, cosecant, and secant functions!

The inverse Cotangent function is typically defined for all real numbers x by

$$
y=\cot ^{-1}(x) \quad \Longleftrightarrow \quad x=\cot (y) \text { for } 0<y<\pi
$$

There is less consensus regarding the inverse secant and cosecant functions.

A Work-Around

We can use the fact that $\sec \theta=\frac{1}{\cos \theta}$ to find an expression for $\sec ^{-1}(x)$. Suppose that

$$
y=\sec ^{-1}(x) \quad \text { and } \quad x=\sec (y)
$$

Then

$$
\frac{1}{x}=\cos (y) \text { so that } y=\cos ^{-1}\left(\frac{1}{x}\right) .
$$

That is

$$
\sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right) .
$$

Use your result to compute (an acceptable value for) $\sec ^{-1}(\sqrt{2})$

$$
\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4} \text { so } \quad \sec ^{-1}(\sqrt{2})=\frac{\pi}{4}
$$

A Work-Around

We can use the following compromise to compute inverse cotangent, secant, and cosecant values ${ }^{2}$:

For those values of x for which each side of the equation is defined

$$
\begin{aligned}
& \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right) \\
& \csc ^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

[^1]
Question

True/False: Since $\cot \theta=\frac{1}{\tan \theta}$, it must be that $\cot ^{-1} x=\frac{1}{\tan ^{-1} x}$.
(a) True, and l'm confident.
(b) True, but I'm not confident.

$$
\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)
$$

(c) False, and I'm confident.

[^0]: ${ }^{1}$ We want to consider $f(x)=\sin ^{-1} x$ as a real valued function of a real variable without necessary reference to angles, triangles, or circles. But the above is a very useful conceptual device for working with and evaluating this function.

[^1]: ${ }^{2}$ Keep in mind that there is disagreement about the ranges!

