Nov. 14 Math 1190 sec. 51 Fall 2016

Section 5.2: The Definite Integral

Recall that we gave the notation and the definition for the definite integral of f from a to b

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

where the limit is taken over all possible partitions of $[a, b]$.

- If the limit exists, it is a number. And we say that f is integrable on $[a, b]$.
- We use the phrase integrating f with respect to x.

Show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$ by using (i) a Riemann sum* and (ii) geometry.

*The following identity is useful

$$
\sum_{i=1}^{n} i=\frac{n^{2}+n}{2}
$$

(i) Form an equally spaced partition w/ n subintervals

$$
\begin{aligned}
& \Delta x=\frac{b-0}{n}=\frac{b}{n} \\
& x_{0}=0, x_{1}=\Delta x, x_{2}=2 \Delta x_{j} \ldots \\
& x_{i}=i \Delta x=i \frac{b}{n}
\end{aligned}
$$

it rectangle height $=f\left(x_{i}^{\prime}\right)=x_{i}=i \frac{b}{n}$ width $=\Delta x=\frac{b}{n}$

Area of the it rectangle is

$$
\text { height } x \text { width }=f\left(x_{i}\right) \Delta x=i \frac{b}{n} \cdot \frac{b}{n}=i\left(\frac{b}{n}\right)^{2}
$$

Total ara

$$
\begin{aligned}
A & \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n} i\left(\frac{b}{n}\right)^{2} \\
& =\left(\frac{b}{n}\right)^{2} \sum_{i=1}^{n} i=\frac{b^{2}}{n^{2}}\left(\frac{n^{2}+n}{2}\right) \\
& =\frac{b^{2}}{2} \frac{n^{2}+n}{n^{2}}
\end{aligned}=\frac{b^{2}}{2}\left(\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right)=\frac{b^{2}}{2}\left(1+\frac{1}{n}\right) ~ \$
$$

$$
A \approx \frac{b^{2}}{2}\left(1+\frac{1}{n}\right)
$$

The true area is obtained by toking $n \rightarrow \infty$,

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}}{2}\left(1+\frac{1}{n}\right)=\frac{b^{2}}{2}(1+0)=\frac{b^{2}}{2}
\end{aligned}
$$

This shows that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$
(ii) Using geometry, the region is a triangle
 bose $B=b$ height $H=b$

$$
\text { Area }=\frac{1}{2} B \cdot H=\frac{1}{2} b \cdot b=\frac{b^{2}}{2}
$$

agon, $\int_{0}^{b} x d x=\frac{b^{2}}{2}$

Section 5.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval $[a, b]$. For $a \leq x \leq b$ define a new function

$$
g(x)=\int_{a}^{x} f(t) d t
$$

How can we understand this function, and what can be said about it?
t is a dummy variable of integration
x is an independent variable

Geometric interpretation of $g(x)=\int_{a}^{x} f(t) d t$

Theorem: The Fundamental Theorem of Calculus (part 1)

If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \text { for } a \leq x \leq b,
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x) .
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

$$
\text { This con be written as } \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Example:
Evaluate each derivative.
(a) $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t=\sin ^{2}(x)$
here $f(t)=\sin ^{2} t$
so $f(x)=\sin ^{2} x$

$$
a=0
$$

(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t=\frac{x-\cos x}{x^{4}+1}$
here $f(t)=\frac{t-\cos t}{t^{4}+1}$
So

$$
\begin{aligned}
& f(x)=\frac{x-\cos x}{x^{4}+1} \\
& a=4
\end{aligned}
$$

Question

Evaluate $\frac{d}{d x} \int_{2}^{x} e^{3 t^{2}} d t$
(a) $e^{3 x^{2}}$

$$
f(t)=e^{3 t^{2}} \text { so } f(x)=e^{3 x^{2}}
$$

(b) $6 x e^{3 x^{2}}$
(c) $e^{3 x^{2}}-e^{12}$

