November 14 Math 2306 sec. 53 Fall 2018

Section 16: Laplace Transforms of Derivatives and IVPs

An LR-series circuit has inductance $L=1 \mathrm{~h}$, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

LR Circuit Example
We found that we could express E as

$$
E(t)=E_{0} \mathscr{U}(t-1)-E_{0} \mathscr{U}(t-3)
$$

so that the IVP we wish to solve is

$$
\begin{aligned}
& \frac{d i}{d t}+10 i=E_{0} \mathscr{U}(t-1)-E_{0} \mathscr{U}(t-3), \quad i(0)=0 \\
& \mathcal{L}\{i(t)\}=I(s) \\
& \mathcal{L}\left\{i^{\prime}+10 i\right\}=\mathcal{L}\left\{E_{0} u(t-1)-E_{0} u(t-3)\right\} \\
& \mathcal{L}\left\{i^{\prime}\right\}+10 \mathscr{L}\{i\}=E_{0} \mathscr{L}\{u(t-1)\}-E_{0} \mathscr{L}\{u(t-3)\} \\
& s I(s)-i(0)+10 I(s)=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& (s+10) I(s)=\frac{E_{0} e^{-s}}{s}-\frac{E_{0} e^{-3 s}}{s} \\
& I(s)=\frac{E_{0} e^{-s}}{s(s+10)}-\frac{E_{0} e^{-3 s}}{s(s+10)}
\end{aligned}
$$

Wéll do a particl fraction decomp on $\frac{1}{S(s+10)}$

$$
\begin{aligned}
\frac{1}{s(s+10)} & =\frac{A}{s}+\frac{B}{s+10} \\
1 & =A(s+10)+B s \\
s & =0 \quad 1=10 A \Rightarrow A=\frac{1}{10} \\
s & =-10 \quad 1=-10 B \Rightarrow B=\frac{-1}{10}
\end{aligned}
$$

So

$$
I(s)=\frac{E_{0}}{10} e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)-\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right)
$$

well use

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)
$$

when $f(t)=\mathscr{L}^{-1}\{F(s)\}$
we need

$$
\mathcal{L}^{-1}\left\{\frac{E_{0}}{10}\left(\frac{1}{s}-\frac{1}{s+10}\right)\right\}
$$

$$
\begin{aligned}
& =\frac{E_{0}}{10}\left(\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+10}\right\}\right) \\
& =\frac{E_{0}}{10}\left(1-e^{-10 t}\right) \\
i(t) & =\mathscr{L}^{-1}\{I(s)\}=\mathscr{L}^{-1}\left\{\frac{E_{0}}{10} e^{-5}\left(\frac{1}{s}-\frac{1}{s+10}\right)-\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right)\right\} \\
i(t) & =\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right) u(t-1)-\frac{E_{0}}{10}\left(1-e^{-10(t-3)}\right) u(t-3)
\end{aligned}
$$

Let's write this in stacked form."

$$
u(t-1)=\left\{\begin{array}{l}
0,0 \leq t<1 \\
1, t \geq 1
\end{array} \quad u(t-3)=\left\{\begin{array}{l}
0,0 \leq t<3 \\
1, t \geq 3
\end{array}\right.\right.
$$

For $0 \leq t<1 \quad u(t-1)=0$ and $u(t-3)=0$

$$
i(t)=0
$$

For $1 \leq t<3 \quad u(t-1)=1$ and $u(t-3)=0$

$$
i(t)=\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right)
$$

For $\quad t \geq 3, u(t-1)=1 \quad u(t-3)=1$

$$
\begin{aligned}
i(t) & =\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right)-\frac{E_{0}}{10}\left(1-e^{-10(t-3)}\right) \\
& =\frac{E_{0}}{10}\left(e^{-10(t-3)}-e^{-10(t-1)}\right) \\
i(t) & = \begin{cases}0 & 0 \leq t<1 \\
\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right), & 1 \leq t<3 \\
\frac{E_{0}}{10}\left(e^{-10(t-3)}-e^{-10(t-1)}\right), & t \geqslant 3\end{cases}
\end{aligned}
$$

Section 17: Fourier Series: Trigonometric Series

Some Preliminary Concepts

Suppose two functions f and g are integrable on the interval $[a, b]$. We define the inner product of f and g on $[a, b]$ as

$$
<f, g>=\int_{a}^{b} f(x) g(x) d x .
$$

We say that f and g are orthogonal on $[a, b]$ if

$$
<f, g>=0 .
$$

The product depends on the interval, so the orthogonality of two functions depends on the interval.

Properties of an Inner Product

Let f, g, and h be integrable functions on the appropriate interval and let c be any real number. The following hold
(i) $<f, g>=<g, f>$
(ii) $<f, g+h>=<f, g>+<f, h>$
(iii) $<c f, g>=c<f, g>$
(iv) $<f, f>\geq 0$ and $<f, f>=0$ if and only if $f=0$

Orthogonal Set

A set of functions $\left\{\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \ldots\right\}$ is said to be orthogonal on an interval $[a, b]$ if

$$
<\phi_{m}, \phi_{n}>=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0 \text { whenever } m \neq n .
$$

Note that any function $\phi(x)$ that is not identically zero will satisfy

$$
\langle\phi, \phi\rangle=\int_{a}^{b} \phi^{2}(x) d x>0 .
$$

Hence we define the square norm of ϕ (on $[a, b]$) to be

$$
\|\phi\|=\sqrt{\int_{a}^{b} \phi^{2}(x) d x} .
$$

An Orthogonal Set of Functions
Consider the set of functions

$$
\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\} \text { on }[-\pi, \pi]
$$

Evaluate $\langle\cos (n x), 1\rangle$ and $\langle\sin (m x), 1\rangle . n, m \geqslant 1$

$$
\begin{aligned}
& a=-\pi \\
& b=\pi
\end{aligned}
$$

$$
\begin{aligned}
\langle\cos (n x), 1\rangle & =\int_{-\pi}^{\pi} \cos (n x) \cdot 1 d x \\
& =\left.\frac{1}{n} \sin (n x)\right|_{-\pi} ^{\pi}=\frac{1}{n} \sin (n \pi)-\frac{1}{n} \sin (-n \pi)=0 \\
\langle\sin (n x), 1\rangle & =\int_{-\pi}^{\pi} \sin (n x) \cdot 1 d x=\left.\frac{-1}{m} \cos (n x)\right|_{-\pi} ^{\pi} \\
& =\frac{-1}{m} \cos (n \pi)-\frac{-1}{m} \cos (-m \pi) \quad \cos (-\theta)=\cos \theta \\
& =\frac{-1}{m} \cos (n \pi)+\frac{1}{m} \cos (m \pi)
\end{aligned}
$$

An Orthogonal Set of Functions

Consider the set of functions
$\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}$ on $\quad[-\pi, \pi]$.
It can easily be verified that
$\int_{-\pi}^{\pi} \cos n x d x=0$ and $\int_{-\pi}^{\pi} \sin m x d x=0$ for all $n, m \geq 1$,
$\int_{-\pi}^{\pi} \cos n x \sin m x d x=0$ for all $m, n \geq 1, \quad$ and
$\int_{-\pi}^{\pi} \cos n x \cos m x d x=\int_{-\pi}^{\pi} \sin n x \sin m x d x=\left\{\begin{array}{ll}0, & m \neq n \\ \pi, & n=m\end{array}\right.$,

An Orthogonal Set of Functions on $[-\pi, \pi]$

These integral values indicated that the set of functions
$\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}$
is an orthogonal set on the interval $[-\pi, \pi]$.

An Orthogonal Set of Functions on $[-p, p]$

This set can be generalized by using a simple change of variables $t=\frac{\pi x}{p}$ to obtain the orthogonal set on $[-p, p]$

$$
\left\{1, \cos \frac{n \pi x}{p}, \left.\sin \frac{m \pi x}{p} \right\rvert\, n, m \in \mathbb{N}\right\}
$$

There are many interesting and useful orthogonal sets of functions (on appropriate intervals). What follows is readily extended to other such (infinite) sets.

Fourier Series

Suppose $f(x)$ is defined for $-\pi<x<\pi$. We would like to know how to write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots such that ${ }^{1}$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

[^0]
Fourier Series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

The question of convergence naturally arises when we wish to work with infinite series. To highlight convergence considerations, some authors prefer not to use the equal sign when expressing a Fourier series and instead write

$$
f(x) \sim \frac{a_{0}}{2}+\cdots
$$

Herein, we'll use the equal sign with the understanding that equality may not hold at each point.

Convergence will be address later.

Finding an Example Coefficient

For a known function f defined on $(-\pi, \pi)$, assume there is such a series ${ }^{2}$. Let's find the coefficient b_{4}.

$$
\begin{gathered}
\text { Multipls by } \sin (4 x) \\
f(x) \sin (4 x)=\frac{a_{0}}{2} \sin (4 x)+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \sin (4 x)+b_{n} \sin n x \sin (4 x)\right) . \\
\text { Integrote from }-\pi \text { to } \pi \\
\int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \sin (4 x) d x
\end{gathered}
$$

[^1] interchanged.
\[

$$
\begin{gathered}
+\sum_{n=1}^{\infty}\left(\int_{-\pi}^{\pi} a_{n} \cos (n x) \sin (4 x) d x+\int_{-\pi}^{\pi} b_{n} \sin (n x) \sin (4 x) d x\right) \\
\int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin (n x) \sin (4 x) d x \\
11
\end{gathered}
$$\left\{$$
\begin{array}{l}
0, n \neq 4 \\
\pi, n=4
\end{array}
$$\right.
\]

$$
b_{4}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (4 x) d x
$$

[^0]: ${ }^{1}$ We'll write $\frac{a_{0}}{2}$ as opposed to a_{0} purely for convenience.

[^1]: ${ }^{2}$ We will also assume that the order of integrating and summing can be

