November 14 Math 3260 sec. 57 Fall 2017 Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$.

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If *D* is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer *k*. Moreover, the eigenvalues of *D* are the diagonal entries.

A D N A B N A B N A B N

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^k and B^k are similar with the same matrix P.

イロト イポト イヨト イヨト 一日

Diagonalizability

Definition: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 今 Q ○ November 13, 2017 14 / 46

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで November 13, 2017 19 / 46

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● ○ へ ○ November 13, 2017 20 / 46

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 ○ ○ November 13, 2017 22 / 46

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 ○ ○ November 13, 2017 24 / 46

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

> November 13, 2017

25/46

Theorem (a third on diagonalizability)

Theorem: Let *A* be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
- (c) If *A* is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)

Example

Diagonalize the matrix if possible. $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 ○ ○ November 13, 2017 28 / 46

Example Continued... Find A^4 where $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

Section 5.4: Eigenvectors and Linear Transformations

Recall: A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ can always be written in terms of a matrix product $T(\mathbf{x}) = A\mathbf{x}$ where *A* is the standard matrix for *T*.

Questions: If A happens to be diagonalizable (A similar to D) is there a way to rewrite T in terms of D to take advantage of the nice diagonal matrix?

If we replace \mathbb{R}^n and \mathbb{R}^m with other (finite dimensional) vectors spaces (e.g. \mathbb{P}_n or $M^{2\times 2}$) can we still write T in terms of a matrix?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The second question

Recall: If *V* is an *n* dimensional vector space with ordered basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, then for each **x** in *V* we can consider its coordinate vector, which is a vector in \mathbb{R}^n , $[\mathbf{x}]_{\mathcal{B}}$.

Schematic: Let $T : V \longrightarrow W$ be linear with V and W vector spaces of dimension n and m, respectively. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V, and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ be a basis for W. Then build a linear transformation from \mathbb{R}^n to \mathbb{R}^m that captures the relationship

$$[\mathbf{X}]_{\mathcal{B}} \quad \mapsto \quad [T(\mathbf{X})]_{\mathcal{C}}.$$

November 13, 2017

33/46

This mapping has a matrix *M*.

Matrix of a Linear Transformation Let $T: V \longrightarrow W$. For **x** in *V* suppose

$$[\mathbf{x}]_{\mathcal{B}} = (r_1, r_2, \ldots, r_n)$$

so that

$$T(\mathbf{x}) = r_1 T(\mathbf{b}_1) + r_2 T(\mathbf{b}_2) + \cdots + r_n T(\mathbf{b}_n).$$

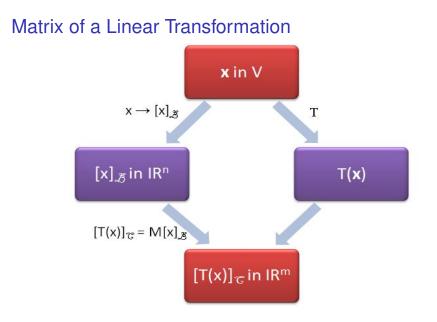
Next, using the coordinate mapping on W

$$[T(\mathbf{x})]_{\mathcal{C}} = r_1[T(\mathbf{b}_1)]_{\mathcal{C}} + r_2[T(\mathbf{b}_2)]_{\mathcal{C}} + \cdots + r_n[T(\mathbf{b}_n)]_{\mathcal{C}}.$$

This is a vector equation in \mathbb{R}^{m} ! So we can write it as a matrix product

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$

where the columns of *M* are the vectors $[T(\mathbf{b}_i)]_C$ for i = 1, ..., n. *M* is called the matrix for *T* relative to the bases *B* and *C*.



November 13, 2017 35 / 46

э

イロト イポト イヨト イヨト

Example

Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3}$ be bases for V and W respectively. And suppose the linear transformation $T : V \longrightarrow W$ is defined by the properties

 $T(\mathbf{b}_1) = \mathbf{c}_1 - 3\mathbf{c}_2 + 4\mathbf{c}_3$, and $T(\mathbf{b}_2) = 5\mathbf{c}_2 - 2\mathbf{c}_3$.

Find the matrix M for T relative to the bases \mathcal{B} and \mathcal{C}

An Example with V = W

Find the matrix for $T : \mathbb{P}_2 \longrightarrow \mathbb{P}_2$ relative to the basis $\mathcal{B} = \{1, t, t^2\}$ where T is defined by

$$T(p_0 + p_1t + p_2t^2) = p_1 - 3p_1t + (p_0 - p_2)t^2.$$

Use the results to find $T(2t^2 + t - 5)$.

イロト 不得 トイヨト イヨト 二日

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 ○ ○ November 13, 2017 39 / 46

Transformation from V to V

Definition: If *V* is an *n* dimensional vector space and $T : V \longrightarrow V$ is linear, and if a single basis \mathcal{B} is used to construct a matrix for *T*, then this matrix is called **the matrix for** *T* **relative to** \mathcal{B} or simply **the** \mathcal{B} **matrix of** *T*. It will be denoted by

 $[T]_{\mathcal{B}}.$

Example $V = \mathbb{R}^2$

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be defined by

$$T(x_1, x_2) = (3x_1 - 2x_2, x_1 + 4x_2).$$

Find the \mathcal{B} matrix of T for the basis¹

$$\mathcal{B} = \left\{ \left[\begin{array}{c} 1 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ -2 \end{array} \right] \right\}.$$

¹Remember that $[\mathbf{x}] = P_{\mathcal{B}}^{-1}\mathbf{x}$ where $P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2]$.

Example Continued...

Find the standard matrix A for $T(x_1, x_2) = (3x_1 - 2x_2, x_1 + 4x_2)$, and verify that

$$[T]_{\mathcal{B}}=P_{\mathcal{B}}^{-1}AP_{\mathcal{B}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
November 13, 2017

43/46

Theorem

Theorem: If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a linear transformation with standard matrix *A*, and *B* is an ordered basis for \mathbb{R}^n , then the *B* matrix of *T* is

$$[T]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}.$$

Corollary: If *A* is diagonalizable with $D = P^{-1}AP$, and \mathcal{B} is the basis of \mathbb{R}^n consisting of the columns of *P*, then the \mathcal{B} matrix of *T* is the diagonal matrix

$$[T]_{\mathcal{B}}=D.$$

A D N A D N A D N A D N B D

Example

Find a basis \mathcal{B} for \mathbb{R}^2 such that the \mathcal{B} matrix of T is diagonal where

$$T(\mathbf{x}) = A\mathbf{x}$$
, and $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$.

ペロト < 部 ト < 注 ト < 注 ト 注 の Q ペ November 13, 2017 46 / 46