Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$.
Diagonal Matrices

Recall: A matrix D is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries d_{ii}, then D^k is diagonal with diagonal entries d_{ii}^k for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.
Powers and Similarity

Show that if A and B are similar, with similarity transformation matrix P, then A^k and B^k are similar with the same matrix P.
Diagonalizability

Definition: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$—i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.
Example

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$
Example

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$
Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We’ve already seen a matrix with a repeated eigenvalue that was diagonalizable.
Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

(a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k.

(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.

(c) If A is diagonalizable, and B_k is a basis for the eigenspace for λ_k, then the collection (union) of bases B_1, \ldots, B_p is a basis for \mathbb{R}^n.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis for \mathbb{R}^n. (Of course, one would need to reference the specific matrix.)
Example

Diagonalize the matrix if possible. \(A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \).
Example Continued...

Find A^4 where $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.
Section 5.4: Eigenvectors and Linear Transformations

Recall: A linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ can always be written in terms of a matrix product $T(x) = Ax$ where A is the standard matrix for T.

Questions: If A happens to be diagonalizable (A similar to D) is there a way to rewrite T in terms of D to take advantage of the nice diagonal matrix?

If we replace \mathbb{R}^n and \mathbb{R}^m with other (finite dimensional) vectors spaces (e.g. \mathbb{P}_n or $M^{2\times 2}$) can we still write T in terms of a matrix?
The second question

Recall: If V is an n dimensional vector space with ordered basis $B = \{b_1, \ldots, b_n\}$, then for each x in V we can consider its coordinate vector, which is a vector in \mathbb{R}^n, $[x]_B$.

Schematic: Let $T : V \longrightarrow W$ be linear with V and W vector spaces of dimension n and m, respectively. Let $B = \{b_1, \ldots, b_n\}$ be a basis for V, and $C = \{c_1, \ldots, c_m\}$ be a basis for W. Then build a linear transformation from \mathbb{R}^n to \mathbb{R}^m that captures the relationship

$$[x]_B \mapsto [T(x)]_C.$$

This mapping has a matrix M.
Matrix of a Linear Transformation

Let $T : V \rightarrow W$. For x in V suppose

$$[x]_B = (r_1, r_2, \ldots, r_n)$$

so that

$$T(x) = r_1 T(b_1) + r_2 T(b_2) + \cdots + r_n T(b_n).$$

Next, using the coordinate mapping on W

$$[T(x)]_C = r_1[T(b_1)]_C + r_2[T(b_2)]_C + \cdots + r_n[T(b_n)]_C.$$

This is a vector equation in \mathbb{R}^m! So we can write it as a matrix product

$$[T(x)]_C = M[x]_B$$

where the columns of M are the vectors $[T(b_i)]_C$ for $i = 1, \ldots, n$. M is called the **matrix for T relative to the bases B and C.**
Matrix of a Linear Transformation

\[x \rightarrow [x]_{\mathcal{B}} \]

\[T(\mathbf{x}) \]

\[[T(\mathbf{x})]_{\mathcal{C}} = M[x]_{\mathcal{B}} \]

\[[T(\mathbf{x})]_{\mathcal{C}} \text{ in IR}^m \]
Example

Let $B = \{b_1, b_2\}$ and $C = \{c_1, c_2, c_3\}$ be bases for V and W respectively. And suppose the linear transformation $T : V \rightarrow W$ is defined by the properties

\[T(b_1) = c_1 - 3c_2 + 4c_3, \quad \text{and} \quad T(b_2) = 5c_2 - 2c_3. \]

Find the matrix M for T relative to the bases B and C
An Example with $V = W$

Find the matrix for $T : \mathbb{P}_2 \rightarrow \mathbb{P}_2$ relative to the basis $\mathcal{B} = \{ 1, t, t^2 \}$ where T is defined by

$$T(p_0 + p_1 t + p_2 t^2) = p_1 - 3p_1 t + (p_0 - p_2)t^2.$$

Use the results to find $T(2t^2 + t - 5)$.

Transformation from V to V

Definition: If V is an n dimensional vector space and $T : V \rightarrow V$ is linear, and if a single basis B is used to construct a matrix for T, then this matrix is called the **matrix for T relative to B** or simply the **B matrix of T**. It will be denoted by $[T]_B$.
Example $V = \mathbb{R}^2$

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by

$$T(x_1, x_2) = (3x_1 - 2x_2, x_1 + 4x_2).$$

Find the \mathcal{B} matrix of T for the basis 1

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix} \right\}.$$

1Remember that $[x] = P_B^{-1}x$ where $P_B = [b_1 \ b_2]$.
Example Continued...

Find the standard matrix A for $T(x_1, x_2) = (3x_1 - 2x_2, x_1 + 4x_2)$, and verify that

$$[T]_B = P_B^{-1} A P_B.$$
Theorem

Theorem: If $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a linear transformation with standard matrix A, and B is an ordered basis for \mathbb{R}^n, then the B matrix of T is

$$[T]_B = P_B^{-1} AP_B.$$

Corollary: If A is diagonalizable with $D = P^{-1} AP$, and B is the basis of \mathbb{R}^n consisting of the columns of P, then the B matrix of T is the diagonal matrix

$$[T]_B = D.$$
Example

Find a basis B for \mathbb{R}^2 such that the B matrix of T is diagonal where

$$T(x) = Ax, \quad \text{and} \quad A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}. $$