November 14 Math 3260 sec. 58 Fall 2017

Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D® where D = [ g _04 } .
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Diagonal Matrices

Recall: A matrix D is diagonal if it is both upper and lower triangular
(its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries dj;, then D is diagonal with

diagonal entries df for positive integer k. Moreover, the eigenvalues of
D are the diagonal entries.
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Powers and Similarity
Show that if A and B are similar, with similarity tranformation matrix P,
then A¥ and B are similar with the same matrix P.

November 13, 2017 4/46



November 13, 2017 5/46



Diagonalizability

Defintion: An n x n matrix A is called diagonalizable if it is similar to
a diagonal matrix D. That is, provided there exists a nonsingular matrix
P such that D = P~'AP—i.e. A= PDP~'.

Theorem: The n x n matrix A is diagonalizable if and only if Ahas n
linearly independent eigenvectors. In this case, the matrix P is the
matrix whose columns are the n linearly independent eigenvectors of
A.
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Example

1 3 3
Diagonalize the matrix A if possible. A = { -3 -5 -3 ]
3 3 1

November 13, 2017 7 /46



November 13, 2017 8/46



November 13, 2017

9/46



November 13, 2017 10/46



November 13, 2017 11/46



November 13, 2017 12/46



November 13, 2017 13/46



=)

November 13, 2017 14 /46



November 13, 2017 15/46



Example

2 4 3
Diagonalize the matrix A if possible. A = { -4 -6 -3 ]
3 3 1
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Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If Ay and ), are distinct eigenvalues of a matrix, the
corresponding eigenvectors are linearly independent.

Theorem: If the n x n matrix A has n distinct eigenvalues, then A is
diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We've
already seen a matrix with a repeated eigenvalue that was
diagonalizable.
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Theorem (a third on diagonalizability)
Theorem: Let A be an n x n matrix with distinct eigenvalues
M, Ap.
(a) The geometric multiplicity (dimension of the eigenspace) of A\ is
less than or equal to the algebraic multiplicity of \.

(b) The matrix is diagonalizable if and only if the sum of the geometric
multiplicities is n—i.e. the sum of dimensions of all eigenspaces is
n so that there are n linearly independent eigenvectors.

(c) If Ais diagonalizable, and By is a basis for the eigenspace for A,
then the collection (union) of bases By, ..., By is a basis for R".

Remark: The union of the bases referred to in part (c) is called an
eigenvector basis for R". (Of course, one would need to reference
the specific matrix. )
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Example
Diagonalize the matrix if possible. A = [ l g ]
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Example Continued...

1 3
; 4 _
Find A* where A = [4 5 |-
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Section 5.4: Eigenvectors and Linear Transformations

Recall: A linear transformation T : R” — R™ can always be written in

terms of a matrix product T(x) = Ax where A is the standard matrix for
T.

Questions: If A happens to be diagonalizable (A similar to D) is there

a way to rewrite T in terms of D to take advantage of the nice diagonal
matrix?

If we replace R"” and R with other (finite dimensional) vectors spaces
(e.g. P, or M?*2) can we still write T in terms of a matrix?
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The second question

Recall: If V is an n dimensional vector space with ordered basis
B = {b,...,bs}, then for each x in V we can consider its coordinate
vector, which is a vector in R”, [X]z.

Schematic: Let T : V — W be linear with V and W vector spaces of
dimension n and m, respectively. Let B = {b+,...,b,} be a basis for
V,and C = {c4,...,cn} be a basis for W. Then build a linear
transformation from R” to R that captures the relationship

Xz = [T

This mapping has a matrix M.
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Matrix of a Linear Transformation
Let T: V — W. Forxin V suppose

Xls = (r1,r2,..., 1)

so that

T(X) =N T(b1) + T(bg) —+ o+ I’nT(bn).
Next, using the coordinate mapping on W

[T()]e = r[T(b1)le + r2[T(b2)le + - - + [T (bpn)]c-

This is a vector equation in R™! So we can write it as a matrix product

[T(X)lc = M[x]s

where the columns of M are the vectors [T(b;)]c fori=1,...,n. Mis
called the matrix for T relative to the bases 5 and C.
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Matrix of a Linear Transformation

x— 3 N T

[x]zin IR"

XinV

[T()]e= Mixl5

[T(x)]<in IR™
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Example

Let B = {by,b>} and C = {c1, €2, c3} be bases for V and W

respectively. And suppose the linear transformation 7: V — W is
defined by the properties

T(b1) =c1 —3cp+4c3, and T(by) = 5¢c, — 2¢s.
Find the matrix M for T relative to the bases B and C
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An Example with V = W
Find the matrix for T : P, — P, relative to the basis B = {1, t, 1?}
where T is defined by

T(po + pit+ pat?) = p1 — 3pit + (po — p2) 2.
Use the results to find T(2t% + t — 5).
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Transformation from V to V

Definition: If V is an n dimensional vector spaceand T: V — Vs
linear, and if a single basis B is used to construct a matrix for T, then
this matrix is called the matrix for T relative to 5 or simply the B
matrix of T. It will be denoted by

[T]5-
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Example V = R?

Let T : R? — R? be defined by

T(X1 s X2) = (3X1 —2Xo, X1 + 4X2).

Find the B matrix of T for the basis'

(1] [4])

'Remember that [x] = P;'x where Pz = [b; by].
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Example Continued...
Find the standard matrix A for T(xy, x2) = (8x1 — 2x2, X1 + 4x2), and

verify that
[T]s = Pg'APs.
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Theorem

Theorem: If T : R” — R is a linear transformation with standard
matrix A, and B is an ordered basis for R", then the B matrix of T is

[T]s = Pg'APs.

Corollary: If A is diagonalizable with D = P~1AP, and B is the basis

of R” consisting of the columns of P, then the B matrix of T is the
diagonal matrix

[T]s = D.
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Example

Find a basis B3 for R? such that the B matrix of T is diagonal where

T(x) = Ax, and A:[2 3].

3 2

November 13, 2017 45/ 46



=)

November 13, 2017

46/ 46



