November 14 Math 3260 sec. 58 Fall 2017

Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$.

Diagonal Matrices

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^k and B^k are similar with the same matrix P.

Diagonalizability

Defintion: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Diagonalize the matrix *A* if possible. $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
- (c) If A is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_n$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)

Diagonalize the matrix if possible. $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

Example Continued...
Find
$$A^4$$
 where $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

Section 5.4: Eigenvectors and Linear Transformations

Recall: A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ can always be written in terms of a matrix product $T(\mathbf{x}) = A\mathbf{x}$ where A is the standard matrix for T.

Questions: If A happens to be diagonalizable (A similar to D) is there a way to rewrite T in terms of D to take advantage of the nice diagonal matrix?

If we replace \mathbb{R}^n and \mathbb{R}^m with other (finite dimensional) vectors spaces (e.g. \mathbb{P}_n or $M^{2\times 2}$) can we still write T in terms of a matrix?

The second question

Recall: If V is an n dimensional vector space with ordered basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then for each \mathbf{x} in V we can consider its coordinate vector, which is a vector in \mathbb{R}^n , $[\mathbf{x}]_{\mathcal{B}}$.

Schematic: Let $T: V \longrightarrow W$ be linear with V and W vector spaces of dimension n and m, respectively. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V, and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ be a basis for W. Then build a linear transformation from \mathbb{R}^n to \mathbb{R}^m that captures the relationship

$$[\mathbf{x}]_{\mathcal{B}} \quad \mapsto \quad [\mathcal{T}(\mathbf{x})]_{\mathcal{C}} \,.$$

This mapping has a matrix M.

Matrix of a Linear Transformation

Let $T: V \longrightarrow W$. For **x** in V suppose

$$[\mathbf{x}]_{\mathcal{B}}=(r_1,r_2,\ldots,r_n)$$

so that

$$T(\mathbf{x}) = r_1 T(\mathbf{b}_1) + r_2 T(\mathbf{b}_2) + \cdots + r_n T(\mathbf{b}_n).$$

Next, using the coordinate mapping on W

$$[T(\mathbf{x})]_{\mathcal{C}} = r_1[T(\mathbf{b}_1)]_{\mathcal{C}} + r_2[T(\mathbf{b}_2)]_{\mathcal{C}} + \cdots + r_n[T(\mathbf{b}_n)]_{\mathcal{C}}.$$

This is a vector equation in $\mathbb{R}^m!$ So we can write it as a matrix product

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$

where the columns of M are the vectors $[T(\mathbf{b}_i)]_{\mathcal{C}}$ for i = 1, ..., n. M is called the **matrix for** T **relative to the bases** \mathcal{B} **and** \mathcal{C} .

Matrix of a Linear Transformation

Let $\mathcal{B}=\{\mathbf{b_1},\mathbf{b_2}\}$ and $\mathcal{C}=\{\mathbf{c_1},\mathbf{c_2},\mathbf{c_3}\}$ be bases for V and W respectively. And suppose the linear transformation $T:V\longrightarrow W$ is defined by the properties

$$T(\boldsymbol{b}_1) = \boldsymbol{c}_1 - 3\boldsymbol{c}_2 + 4\boldsymbol{c}_3, \quad \text{and} \quad T(\boldsymbol{b}_2) = 5\boldsymbol{c}_2 - 2\boldsymbol{c}_3.$$

Find the matrix M for T relative to the bases \mathcal{B} and \mathcal{C}

An Example with V = W

Find the matrix for $T: \mathbb{P}_2 \longrightarrow \mathbb{P}_2$ relative to the basis $\mathcal{B} = \{1, t, t^2\}$ where T is defined by

$$T(p_0 + p_1t + p_2t^2) = p_1 - 3p_1t + (p_0 - p_2)t^2.$$

Use the results to find $T(2t^2 + t - 5)$.

Transformation from *V* to *V*

Definition: If V is an n dimensional vector space and $T:V\longrightarrow V$ is linear, and if a single basis $\mathcal B$ is used to construct a matrix for T, then this matrix is called **the matrix for** T **relative to** $\mathcal B$ or simply **the** $\mathcal B$ **matrix of** T. It will be denoted by

 $[T]_{\mathcal{B}}$.

Example $V = \mathbb{R}^2$

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be defined by

$$T(x_1,x_2)=(3x_1-2x_2,x_1+4x_2).$$

Find the \mathcal{B} matrix of T for the basis¹

$$\mathcal{B} = \left\{ \left[\begin{array}{c} 1 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ -2 \end{array} \right] \right\}.$$

¹Remember that $[x] = P_{\mathcal{B}}^{-1}x$ where $P_{\mathcal{B}} = [b_1 \ b_2]$.

Example Continued...

Find the standard matrix A for $T(x_1, x_2) = (3x_1 - 2x_2, x_1 + 4x_2)$, and verify that

$$[T]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}AP_{\mathcal{B}}.$$

Theorem

Theorem: If $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a linear transformation with standard matrix A, and B is an ordered basis for \mathbb{R}^n , then the B matrix of T is

$$[T]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}.$$

Corollary: If A is diagonalizable with $D = P^{-1}AP$, and \mathcal{B} is the basis of \mathbb{R}^n consisting of the columns of P, then the \mathcal{B} matrix of T is the diagonal matrix

$$[T]_{\mathcal{B}} = D.$$

Find a basis \mathcal{B} for \mathbb{R}^2 such that the \mathcal{B} matrix of \mathcal{T} is diagonal where

$$T(\mathbf{x}) = A\mathbf{x}$$
, and $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$.