November 14 Math 3260 sec. 58 Fall 2017

Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^{3} where $D=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$.

Diagonal Matrices

Recall: A matrix D is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries $d_{i j}$, then D^{k} is diagonal with diagonal entries $d_{i j}^{k}$ for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^{k} and B^{k} are similar with the same matrix P.

Diagonalizability

Defintion: An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$

November 13, 2017

November 13, 2017

November 13, 2017

Example

Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$

November 13, 2017

November 13, 2017

November 13, 2017

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_{1} and λ_{2} are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) The geometric multiplicity (dimension of the eigenspace) of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k}.
(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n-i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
(c) If A is diagonalizable, and \mathcal{B}_{k} is a basis for the eigenspace for λ_{k}, then the collection (union) of bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n}.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis for \mathbb{R}^{n}. (Of course, one would need to reference the specific matrix.)

Example

Diagonalize the matrix if possible. $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$.

Example Continued...
Find A^{4} where $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$.

November 13, 2017

November 13, 2017

Section 5.4: Eigenvectors and Linear Transformations

Recall: A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ can always be written in terms of a matrix product $T(\mathbf{x})=A \mathbf{x}$ where A is the standard matrix for T.

Questions: If A happens to be diagonalizable (A similar to D) is there a way to rewrite T in terms of D to take advantage of the nice diagonal matrix?

If we replace \mathbb{R}^{n} and \mathbb{R}^{m} with other (finite dimensional) vectors spaces (e.g. \mathbb{P}_{n} or $M^{2 \times 2}$) can we still write T in terms of a matrix?

The second question

Recall: If V is an n dimensional vector space with ordered basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then for each \mathbf{x} in V we can consider its coordinate vector, which is a vector in $\mathbb{R}^{n},[\mathbf{x}]_{\mathcal{B}}$.

Schematic: Let $T: V \longrightarrow W$ be linear with V and W vector spaces of dimension n and m, respectively. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V, and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$ be a basis for W. Then build a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} that captures the relationship

$$
[\mathbf{x}]_{\mathcal{B}} \quad \mapsto \quad[T(\mathbf{x})]_{\mathcal{C}} .
$$

This mapping has a matrix M.

Matrix of a Linear Transformation

Let $T: V \longrightarrow W$. For \mathbf{x} in V suppose

$$
[\mathbf{x}]_{\mathcal{B}}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

so that

$$
T(\mathbf{x})=r_{1} T\left(\mathbf{b}_{1}\right)+r_{2} T\left(\mathbf{b}_{2}\right)+\cdots+r_{n} T\left(\mathbf{b}_{n}\right)
$$

Next, using the coordinate mapping on W

$$
[T(\mathbf{x})]_{\mathcal{C}}=r_{1}\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}+r_{2}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}}+\cdots+r_{n}\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}} .
$$

This is a vector equation in \mathbb{R}^{m} ! So we can write it as a matrix product

$$
[T(\mathbf{x})]_{\mathcal{C}}=M[\mathbf{x}]_{\mathcal{B}}
$$

where the columns of M are the vectors $\left[T\left(\mathbf{b}_{i}\right)\right]_{\mathcal{C}}$ for $i=1, \ldots, n . M$ is called the matrix for T relative to the bases \mathcal{B} and \mathcal{C}.

Matrix of a Linear Transformation

Example

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$ be bases for V and W respectively. And suppose the linear transformation $T: V \longrightarrow W$ is defined by the properties

$$
T\left(\mathbf{b}_{1}\right)=\mathbf{c}_{1}-3 \mathbf{c}_{2}+4 \mathbf{c}_{3}, \quad \text { and } \quad T\left(\mathbf{b}_{2}\right)=5 \mathbf{c}_{2}-2 \mathbf{c}_{3} .
$$

Find the matrix M for T relative to the bases \mathcal{B} and \mathcal{C}

November 13, 2017

An Example with $V=W$

Find the matrix for $T: \mathbb{P}_{2} \longrightarrow \mathbb{P}_{2}$ relative to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ where T is defined by

$$
T\left(p_{0}+p_{1} t+p_{2} t^{2}\right)=p_{1}-3 p_{1} t+\left(p_{0}-p_{2}\right) t^{2}
$$

Use the results to find $T\left(2 t^{2}+t-5\right)$.

November 13, 2017

Transformation from V to V

Definition: If V is an n dimensional vector space and $T: V \longrightarrow V$ is linear, and if a single basis \mathcal{B} is used to construct a matrix for T, then this matrix is called the matrix for T relative to \mathcal{B} or simply the \mathcal{B} matrix of T. It will be denoted by

$$
[T]_{\mathcal{B}} .
$$

Example $V=\mathbb{R}^{2}$

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be defined by

$$
T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-2 x_{2}, x_{1}+4 x_{2}\right) .
$$

Find the \mathcal{B} matrix of T for the basis ${ }^{1}$

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-2
\end{array}\right]\right\} .
$$

${ }^{1}$ Remember that $[\mathbf{x}]=P_{\mathcal{B}}^{-1} \mathbf{x}$ where $P_{\mathcal{B}}=\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]$.

November 13, 2017

Example Continued...

Find the standard matrix A for $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-2 x_{2}, x_{1}+4 x_{2}\right)$, and verify that

$$
[T]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}
$$

Theorem

Theorem: If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a linear transformation with standard matrix A, and \mathcal{B} is an ordered basis for \mathbb{R}^{n}, then the \mathcal{B} matrix of T is

$$
[T]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} A P_{\mathcal{B}} .
$$

Corollary: If A is diagonalizable with $D=P^{-1} A P$, and \mathcal{B} is the basis of \mathbb{R}^{n} consisting of the columns of P, then the \mathcal{B} matrix of T is the diagonal matrix

$$
[T]_{\mathcal{B}}=D .
$$

Example

Find a basis \mathcal{B} for \mathbb{R}^{2} such that the \mathcal{B} matrix of T is diagonal where

$$
T(\mathbf{x})=A \mathbf{x}, \quad \text { and } \quad A=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]
$$

November 13, 2017

