Nov. 16 Math 1190 sec. 51 Fall 2016

Section 5.3: The Fundamental Theorem of Calculus

Theorem: The Fundamental Theorem of Calculus (part 1)
If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Question

Evaluate $\frac{d}{d x} \int_{7}^{x} \tan ^{-1}(t) d t$
(a) $\frac{1}{1+x^{2}}$

(c) $\tan ^{-1}(x)-\tan ^{-1}(7)$

Geometric Argument of FTC

Recall $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$
red area \approx red rectangle area $=f(x) \cdot h^{\text {wis }}$, th
S.

$$
g(x+h)-g(x) \approx f(x) h
$$

This approximation becomes "more exact" as h gets smaller.

$$
\frac{g(x+h)-g(x)}{h} \approx f(x)
$$

Take $h \rightarrow 0$

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=f(x)
$$

Chain Rule with FTC
Evaluate each derivative.
(a) $\frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t$

Chain rule: If $u=u(x)$

$$
\frac{d}{d x} F(u)=F^{\prime}(u) \cdot \frac{d u}{d x}
$$

If $u=x^{2}$ and

$$
\begin{aligned}
& \text { If } u=x^{2} \text { and } \\
& F(u)=\int_{0}^{u} t^{3} d t=\int_{0}^{x^{2}} t^{3} d t \text { is ow integral. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { <<l } F^{\prime}(u)=u^{3} \text { and } \frac{d u}{d x}=2 x^{4} \text { power ruble } \\
& \frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t=F^{\prime}(u) \frac{d u}{d x}=u^{3}(2 x)=\left(x^{2}\right)^{3}(2 x)=2 x^{7}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t \\
= & \frac{d}{d x}\left(-\int_{7}^{x} \cos \left(t^{2}\right) d t\right) \\
= & -\frac{d}{d x} \int_{7}^{x} \cos \left(t^{2}\right) d t \\
& =-\cos \left(x^{2}\right)
\end{aligned}
$$

Recall

$$
\int_{a}^{b} f(t) d t=-\int_{b}^{a} f(t) d t
$$

(c) $\frac{d}{d x} \int_{3}^{\sin x} \frac{1}{1+t^{3}} d t$

If $u=\sin x$ then $u^{\prime}=\cos x$

$$
F(u)=\int_{3}^{u} \frac{1}{1+t^{3}} d t \Rightarrow F^{\prime}(u)=\frac{1}{1+u^{3}}
$$

(a) $\frac{1}{1+\sin ^{3} x}$
(b) $\frac{\cos x}{1+\sin ^{3} x}$
(c) $\frac{\cos x}{1+x^{3}}$

$$
=\frac{\cos x}{1+\sin ^{3} x}
$$

(d) $\frac{-3 \sin ^{2} x}{\left(1+\sin ^{3} x\right)^{2}}$

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (ie. $F^{\prime}(x)=f(x)$)
To evaluate $\int_{a}^{b} f(x) d x$, find an $F(x)$, then taler the difference $F(b)-F(a)$.

Note: $\int_{a}^{b} f(x) d x$ is a number.

Example: Use the FTC to show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$
Here $f(x)=x=x^{\text {, toreower }}$
an ontidenivative is $F(x)=\frac{x^{1+1}}{1+1}=\frac{x^{2}}{2}$
Note $F(b)=\frac{b^{2}}{2}$ and $F(0)=\frac{0^{2}}{2}=0$
So

$$
\int_{0}^{b} x d x=F(b)-F(0)=\frac{b^{2}}{2}-0=\frac{b^{2}}{2}
$$

as expected!

Notation

Suppose F is an antiderivative of f. We write

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

or sometimes

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

For example

$$
\int_{0}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Evaluate each definite integral using the FTC

(a) $\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=2^{3}-0^{3}=8$

$$
\text { (b) } \begin{aligned}
\int_{\frac{\pi}{2}}^{\pi} \cos x d x & =\left.\sin x\right|_{\pi / 2} ^{\pi} \\
& =\sin \pi-\sin \frac{\pi}{2} \\
& =0-1 \\
& =-1
\end{aligned}
$$

Question
(c) $\int_{1}^{9} \frac{1}{2} u^{-1 / 2} d u=\left.u^{1 / 2}\right|_{1} ^{9}=9^{1 / 2}-1^{1 / 2}=3-1=2$
(a) 8

Nole $\frac{1}{2} u^{-1 / 2} \xrightarrow{\text { tale }} \frac{1}{2} \frac{u^{\frac{1}{2}+1}}{\frac{-1}{2}+1}$
(b) $\frac{13}{54}$
ontideniv.

$$
\frac{1}{2} \frac{u^{1 / 2}}{1 / 2}=u^{1 / 2}
$$

(c) 2
(d) $-\frac{1}{3}$
(d)

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{1}{\sqrt{1-t^{2}}} d t & =\left.\sin ^{-1} t\right|_{0} ^{1 / 2} \\
& =\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0) \\
& =\frac{\pi}{6}-0 \\
& =\pi / 6
\end{aligned}
$$

Caveat! The FTC doesn't apply if f is not continuous!

The function $f(x)=\frac{1}{x^{2}}$ is positive everywhere on its domain. Now consider the calculation

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{2}=-\frac{1}{2}-1=-\frac{3}{2}
$$

Is this believable? Why or why not?

No, this should be true positive area, but it's negative.

Question

Determine which, if any, of the following integrals does not meet the criteria for the FTC to apply.
(a) $\int_{1}^{7} \ln (x) d x$
(b) $\int_{1}^{e} \ln (x) d x$
(()) $\int_{0}^{7} \ln (x) d x$

$$
\begin{aligned}
& \ln x \text { is not continuous on }[0,7] \\
& \qquad \lim _{x \rightarrow 0^{+}} \ln x=-\infty
\end{aligned}
$$

(d) The FTC applies to all three of these.

An Observation

If f is differentiable on $[a, b]$, note that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

This says that:
The integral of the rate of change of f over the interval $[a, b]$ is the net change of the function, $f(b)-f(a)$, over this interval.

Rectilinear Motion

If the position of a particle, relative to an origin, moving along a straight line is $s(t)$, then it's velocity is

$$
v(t)=s^{\prime}(t) .
$$

The net change result tells us that the net distance traveled on the time interval $[a, b]$, final position minus starting position, is

$$
s(b)-s(a)=\int_{a}^{b} v(t) d t
$$

We can say that the final position

$$
s(b)=s(a)+\int_{a}^{b} v(t) d t .
$$

