Nov. 16 Math 1190 sec. 51 Fall 2016

Section 5.3: The Fundamental Theorem of Calculus

Theorem: The Fundamental Theorem of Calculus (part 1)
If f is continuous on [a, b] and the function g is defined by

X
g(x):/ f(t)ydt for a<x<b,
a

then g is continuous on [a, b] and differentiable on (a, b). Moreover

This means that the new function g is an antiderivative of f on (a, b)!
"FTC” = "fundamental theorem of calculus”
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Geometric Argument of FTC
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Chain Rule with FTC

Evaluate each derivative.
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Theorem: The Fundamental Theorem of Calculus
(part 2)

If f is continuous on [a, b], then

/ ’ f(x) dx = F(b) — F(a)

where F is any antiderivative of f on [a, b]. (i.e. F'(x) = f(x))
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Example: Use the FTC to show that [, x dx = £
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Notation

Suppose F is an antiderivative of f. We write

b

/ Y0 dx = F(x)| = F(b) - F(a)
or sometimes
b b
/ f(x)dx = F(x)| = F(b)— F(a)
For example
b2 02 p?




Evaluate each definite integral using the FTC
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Caveat! The FTC doesn’t apply if f is not continuous!

The function f(x) = % is positive everywhere on its domain. Now
consider the calculation

2 —1
1 X
[oes="5

Is this believable? Why or why not?
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Question
Determine which, if any, of the following integrals does not meet the
criteria for the FTC to apply.

(a) /17 In(x) dx

(b) /1€In(x) dx

() /7In(x)dx I 15 mek s on [0,3)
0 l“\ .D“X = -DO

Xa0%F

(d) The FTC applies to all three of these.
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/ ’ f(x) dx = f(b) — f(a).

This says that:

The integral of the rate of change of f over the interval [a, b] is the net
change of the function, f(b) — f(a), over this interval.



Rectilinear Motion

If the position of a particle, relative to an origin, moving along a straight
line is s(t), then it’s velocity is

The net change result tells us that the net distance traveled on the time
interval [a, b], final position minus starting position, is

b

s(b) — s(a) = / v(t) dt

a
We can say that the final position
b

s(b) = s(a) +/ v(t) dt.

a



