Nov. 16 Math 1190 sec. 52 Fall 2016

Section 5.3: The Fundamental Theorem of Calculus

Theorem: The Fundamental Theorem of Calculus (part 1)
If f is continuous on [a, b] and the function g is defined by

X
g(x):/ f(t)ydt for a<x<b,
a

then g is continuous on [a, b] and differentiable on (a, b). Moreover

This means that the new function g is an antiderivative of f on (a, b)!
"FTC” = "fundamental theorem of calculus”
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Chain Rule with FTC

If f is continuous, u(x) is some differentiable function of x and a is
constant, then by the chain rule
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Theorem: The Fundamental Theorem of Calculus
(part 2)

If f is continuous on [a, b], then

/ ’ f(x) dx = F(b) — F(a)

where F is any antiderivative of f on [a, b]. (i.e. F'(x) = f(x))
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Example: Use the FTC to show that [, x dx = £
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Notation

Suppose F is an antiderivative of f. We write

b

/ Y0 dx = F(x)| = F(b) - F(a)
or sometimes
b b
/ f(x)dx = F(x)| = F(b)— F(a)
For example
b2 02 p?




Evaluate each definite integral using the FTC
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Caveat! The FTC doesn’t apply if f is not continuous!

The function f(x) = % is positive everywhere on its domain. Now
consider the calculation

2 —1
1 X
[ =5

Is this believable? Why or why not?
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Question
Determine which, if any, of the following integrals does not meet the
criteria for the FTC to apply.
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(d) The FTC applies to all three of these.



An Observation

If f is differentiable on [a, b], note that

/ ’ f(x) dx = f(b) — f(a).

This says that:

The integral of the rate of change of f over the interval [a, b] is the net
change of the function, f(b) — f(a), over this interval.



Rectilinear Motion

If the position of a particle, relative to an origin, moving along a straight
line is s(t), then it’s velocity is

The net change result tells us that the net distance traveled on the time
interval [a, b], final position minus starting position, is

b

s(b) — s(a) = / v(t) dt

a
We can say that the final position
b

s(b) = s(a) +/ v(t) dt.
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Example

A ball is dropped from a 300 ft cliff. It's velocity is v(t) = —32t ft/sec.
Determine the height of the ball after 2 seconds.
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Section 5.4: Properties of the Definite Integral

Suppose that f and g are integable on [a, b] and let k be constant.

l. /bkf(x)dx:k/bf(x)dx
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I /(f(x)+g(x))dx:/ f(x)dx+/ g(x) dx
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I. /a(f(x)g(x))dx:/a f(x)dx/a ag(x) dx



Examples

Suppose f1 f(x) dx = 3 and f1
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(ii) /1 [f(x)+3g(x)] dx
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Question

Suppose [; f(x) dx = 3 and [} g(x) dx = —7. Evaluate

/1 [9(x)—3f(x)] dx
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