November 16 Math 2306 sec 51 Fall 2015

Section 11.1: (Brief Overview of Inner Product and Orthogonality)

Suppose two functions f and g are integrable on the interval $[a, b]$. We define the inner product of f and g on $[a, b]$ as

$$
<f, g>=\int_{a}^{b} f(x) g(x) d x .
$$

We say that f and g are orthogonal on $[a, b]$ if

$$
\langle f, g\rangle=0 .
$$

The product depends on the interval, so the orthogonality of two functions depends on the interval.

Orthogonal Set

A set of functions $\left\{\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \ldots\right\}$ is said to be orthogonal on an interval $[a, b]$ if

$$
<\phi_{m}, \phi_{n}>=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0 \text { whenever } m \neq n .
$$

Note that any function $\phi(x)$ that is not identically zero will satisfy

$$
\langle\phi, \phi\rangle=\int_{a}^{b} \phi^{2}(x) d x>0 .
$$

Hence we define the square norm of ϕ (on $[a, b]$) to be

$$
\|\phi\|=\sqrt{\int_{a}^{b} \phi^{2}(x) d x} .
$$

An Orthogonal Set of Functions

The set $\{1, \cos (n x), \sin (m x) \mid$ for integers $n, m \geq 1\}$ is orthogonal on $[-\pi, \pi]$. Moreover, we have the properties
$\int_{-\pi}^{\pi} \cos n x d x=0$ and $\int_{-\pi}^{\pi} \sin m x d x=0$ for all $n, m \geq 1$,
$\int_{-\pi}^{\pi} \cos n x \sin m x d x=0$ for all $m, n \geq 1$,

$$
\langle 1,1\rangle=\int_{-\pi}^{\pi} d x=\left.x\right|_{-\pi} ^{\pi}
$$

$\int_{-\pi}^{\pi} \cos n x \cos m x d x=\left\{\begin{array}{ll}0, & m \neq n \\ \pi, & n=m\end{array}\right.$,
$\int_{-\pi}^{\pi} \sin n x \sin m x d x= \begin{cases}0, & m \neq n \\ \pi, & n=m\end{cases}$

Section 11.2: Fourier Series

Suppose $f(x)$ is defined for $-\pi<x<\pi$. We would like to know how to write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots such that ${ }^{1}$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

[^0]For a known function f defined on $(-\pi, \pi)$, assume the series holds. Find the coefficient b_{4}. Multiply both sides by $\sin 4 x$

$$
f(x) \sin 4 x=\frac{a_{0}}{2} \sin 4 x+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \sin 4 x+b_{n} \sin n x \sin 4 x\right)
$$

Now integrate both sides with respect to x from $-\pi$ to π (assume it is valid to integrate first and sum later).
$\int_{-\pi}^{\pi} f(x) \sin 4 x d x=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \sin 4 x d x+$

$$
\sum_{n=1}^{\infty}\left(\int_{-\pi}^{\pi} a_{n} \cos n x \sin 4 x d x+\int_{-\pi}^{\pi} b_{n} \sin n x \sin 4 x d x\right)
$$

$$
\begin{gathered}
\int_{-\pi}^{\pi} f(x) \sin 4 x d x=\frac{a_{0}}{2} \int_{-\pi}^{\pi} \sin 4 x d x+ \\
\quad \sum_{n=1}^{\infty}\left(a_{n} \int_{-\pi}^{\pi} \cos n x \sin 4 x d x+b_{n} \int_{-\pi}^{\pi} \sin n x \sin 4 x d x\right) .
\end{gathered}
$$

Note $\int_{-\pi}^{\pi} \sin (4 x) d x=0$
dso $\int_{-\pi}^{\pi} \cos (n x) \sin (4 x) d x=0$ for dll n

So for we have

$$
\int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin (n x) \sin (4 x) d x
$$

$$
\begin{array}{r}
\Rightarrow \int_{-\pi}^{\pi} f(x) \sin (4 x) d x=b_{4} \pi \\
\Rightarrow \quad b_{4}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (4 x) d x
\end{array}
$$

The Fourier Series of $f(x)$ on $(-\pi, \pi)$

The Fourier series of the function f defined on $(-\pi, \pi)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Where

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \text { and } \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Example
Find the Fourier series of the piecewise defined function

$$
\left.\begin{array}{l}
f(x)= \begin{cases}0, & -\pi<x<0 \\
x, & 0 \leq x<\pi\end{cases} \\
\begin{array}{rl}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 d x+\frac{1}{\pi} \int_{0}^{\pi} x d x \\
& =\frac{1}{\pi}\left[\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{1}{\pi}\left(\frac{\pi^{2}}{2}-0\right)=\frac{\pi}{2}\right.
\end{array} \\
G_{n}
\end{array}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \cos (\ln x) d x+\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x\right] .
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\left.\frac{x}{n} \sin (n x)\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x \quad\right. \\
& =\frac{1}{\pi}\left[\frac{\pi}{n} \sin (n \pi)-0\right]+\left.\frac{1}{n^{2}} \cos (n x)\right|_{6} ^{\pi} \quad u=x \quad d u=d x \\
& =\frac{1}{\pi} \frac{1}{n^{2}}(\cos (n \pi)-\cos (0) \quad \quad d v=\cos (n x) d x \\
& =\frac{1}{\pi}\left[(-1)^{2}-1\right] \quad \sin (n x)
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 \sin (n x) d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \\
& =\frac{1}{\pi}\left[\left.\frac{-x}{n} \cos (n x)\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x \quad B_{2}\right. \text { parts } \\
& \left.=\frac{1}{\pi}\left[\frac{-\pi}{n} \cos (n \pi)-0\right]+\frac{1}{n^{2}} \sin (n x)\right)_{0}^{\pi} \quad \omega=x \quad d \omega=d x \\
& =\frac{1}{\pi}\left(\frac{-\pi}{n}(-1)^{n}\right)+\frac{1}{\pi n^{2}}(\sin (n \pi)-\sin (0)) \quad v=\frac{-1}{n} \cos (n x) \\
& =\frac{-(-1)^{n}}{n}=\frac{(-1)^{n+1}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \\
& f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{(-1)^{n}-1}{\pi n^{2}} \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x)\right]
\end{aligned}
$$

Fourier Series on an interval ($-p, p$)

The set of functions The set $\left\{1, \cos \left(\frac{n \pi x}{p}\right), \left.\sin \left(\frac{m \pi x}{\rho}\right) \right\rvert\, n, m \geq 1\right\}$ is orthogonal on $[-p, p]$. Moreover, we have the properties
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) d x=0$ and $\int_{-p}^{p} \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $n, m \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $m, n \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \cos \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$,
$\int_{-p}^{p} \sin \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$.

Fourier Series on an interval ($-p, p$)

The orthogonality relations provide for an expansion of a function f defined on $(-p, p)$ as

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, \quad \text { and } \\
& b_{n}=\frac{1}{\pi} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
\end{aligned}
$$

Find the Fourier series of f

$$
f(x)=\left\{\begin{array}{lr}
1, & -1<x<0 \\
-2, & 0 \leq x<1
\end{array}\right.
$$

Here, $p=1$

$$
\begin{aligned}
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} d x+\int_{0}^{1}(-2) d x \\
&=\left.x\right|_{-1} ^{0}-\left.2 x\right|_{0} ^{1}=(0-(-1))-2(1-0)=-1 \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n \pi x}{1}\right) d x=\int_{-1}^{0} \cos (n \pi x) d x-\int_{0}^{1} 2 \cos (n \pi x) d x \\
&=\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}-\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{0} ^{1} \\
&=\frac{1}{n \pi}[\sin 0-\sin (-n \pi)]-\frac{2}{n \pi}[\sin (n \pi)-\sin 0]=0
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \sin \left(\frac{n \pi x}{1}\right) d x=\int_{-1}^{0} \sin (n \pi x) d x-\int_{0}^{1} 2 \sin (n \pi x) d x \\
& =\left.\frac{-1}{n \pi} \cos (n \pi x)\right|_{-1} ^{0}+\left.\frac{2}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
& =\frac{-1}{n \pi}[\cos 0-\cos (-n \pi)]+\frac{2}{n \pi}[\cos (n \pi)-\cos 0] \\
& =\frac{-1}{n \pi}+\frac{(-1)^{n}}{n \pi}+\frac{2(-1)^{n}}{n \pi}-\frac{2}{n \pi}=\frac{3}{n \pi}\left((-1)^{n}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+b_{r} \sin (n \pi x) \\
& f(x)=\frac{-1}{2}+\sum_{n=1}^{\infty} \frac{3}{n \pi}\left((-1)^{n}-1\right) \sin (n \pi x)
\end{aligned}
$$

[^0]: ${ }^{1}$ We'll write $\frac{a_{0}}{2}$ as opposed to a_{0} purely for convenience.

