November 16 Math 2306 sec 51 Fall 2015

Section 11.1: (Brief Overview of Inner Product and Orthogonality)

Suppose two functions f and g are integrable on the interval [a, b]. We define the **inner product** of f and g on [a, b] as

$$\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$$

We say that f and g are **orthogonal** on [a, b] if

$$< f, g > = 0.$$

The product depends on the interval, so the orthogonality of two functions depends on the interval.

Orthogonal Set

A set of functions $\{\phi_0(x), \phi_1(x), \phi_2(x), \ldots\}$ is said to be **orthogonal** on an interval [a, b] if

$$<\phi_m,\phi_n>=\int_a^b\phi_m(x)\phi_n(x)\,dx=0$$
 whenever $m\neq n$.

Note that any function $\phi(x)$ that is not identically zero will satisfy

$$<\phi,\phi>=\int_{a}^{b}\phi^{2}(x)\,dx>0.$$

Hence we define the **square norm** of ϕ (on [a, b]) to be

$$\|\phi\| = \sqrt{\int_a^b \phi^2(x) \, dx}.$$

An Orthogonal Set of Functions

The set $\{1, \cos(nx), \sin(mx)|$ for integers $n, m \ge 1\}$ is orthogonal on $[-\pi, \pi]$. Moreover, we have the properties

$$\int_{-\pi}^{\pi}\cos nx\,dx=0\quad\text{and}\quad\int_{-\pi}^{\pi}\sin mx\,dx=0\quad\text{for all}\quad n,m\geq 1,$$

$$\int_{-\pi}^{\pi} \cos nx \sin mx \, dx = 0 \quad \text{for all} \quad m, n \ge 1,$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \begin{cases} 0, & m \ne n \\ \pi, & n = m \end{cases},$$

$$= \pi \cdot (-\pi) = 2\pi$$

$$\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = \begin{cases} 0, & m \neq n \\ \pi, & n = m \end{cases}.$$

Section 11.2: Fourier Series

Suppose f(x) is defined for $-\pi < x < \pi$. We would like to know how to write f as a series **in terms of sines and cosines**.

Task: Find coefficients (numbers) a_0 , a_1 , a_2 ,... and b_1 , b_2 ,... such that¹

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right).$$

4 / 61

¹We'll write $\frac{a_0}{2}$ as opposed to a_0 purely for convenience $a_0 + a_0 +$

For a known function f defined on $(-\pi, \pi)$, assume the series holds. Find the coefficient b_4 . Multiply both sides by $\sin 4x$

$$f(x)\sin 4x = \frac{a_0}{2}\sin 4x + \sum_{n=1}^{\infty} \left(a_n \cos nx \sin 4x + b_n \sin nx \sin 4x\right).$$

Now integrate both sides with respect to x from $-\pi$ to π (assume it is valid to integrate first and sum later).

$$\int_{-\pi}^{\pi} f(x) \sin 4x \, dx = \int_{-\pi}^{\pi} \frac{a_0}{2} \sin 4x \, dx +$$

$$\sum_{n=1}^{\infty} \left(\int_{-\pi}^{\pi} a_n \cos nx \sin 4x \, dx + \int_{-\pi}^{\pi} b_n \sin nx \sin 4x \, dx \right).$$

$$\int_{-\pi}^{\pi} f(x) \sin 4x \, dx = \frac{a_0}{2} \int_{-\pi}^{\pi} \sin 4x \, dx +$$

$$\sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos nx \sin 4x \, dx + b_n \int_{-\pi}^{\pi} \sin nx \sin 4x \, dx \right).$$

Note
$$\int_{-\pi}^{\pi} \sin(4x) dx = 0$$
also
$$\int_{-\pi}^{\pi} \cos(nx) \sin(4x) dx = 0$$
of the solution of the so

November 13, 2015 6 / 61

5. for we have
$$\int_{-\pi}^{\pi} f(x) \sin(4x) dx = \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin(nx) \sin(4x) dx$$

But
$$\int_{-\pi}^{\pi} Sin(nx) Sin(4x) dx = \begin{cases} 0, & n \neq 4 \\ \pi, & n = 4 \end{cases}$$

$$\Rightarrow \qquad b_{4} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(4x) dx$$

The Fourier Series of f(x) on $(-\pi, \pi)$

The **Fourier series** of the function f defined on $(-\pi, \pi)$ is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right).$$

Where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \text{ and}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Example

Find the Fourier series of the piecewise defined function

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 \le x < \pi \end{cases}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{-\pi}^{0} \delta \, dx + \frac{1}{\pi} \int_{0}^{\pi} x \, dx$$

$$= \frac{1}{\pi} \left[\frac{\chi^2}{2} \right]_{0}^{\pi} = \frac{1}{\pi} \left(\frac{\pi^2}{2} - \delta \right) = \frac{\pi}{2}$$

$$G_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\infty} 0 \cdot \cos(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{1}{\pi} \left[\frac{x}{n} \sin(nx) \right]^{\frac{\pi}{n}} - \frac{1}{n} \int_{0}^{\pi} \sin(nx) dx \qquad \text{By parts}$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} \sin(n\pi) - 0 \right] + \frac{1}{n^{2}} \cos(nx) \int_{0}^{\pi} dx \qquad \text{d}x = dx$$

$$V = \frac{1}{n} \sin(nx) dx$$

$$V = \frac{1}{n} \sin(nx)$$

$$= \frac{1}{\pi^2} \frac{1}{n^2} \left(\cos(n\pi) - \cos(\delta) \right)$$

$$= \frac{\pi n^2}{1 - 1} \left[\left(-1 \right)^2 - 1 \right]$$

$$C_{os}(n\pi) = (-1)$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) S_{in}(n_{x}) dx = \frac{1}{\pi} \int_{0}^{0} S_{in}(n_{x}) dx + \frac{1}{\pi} \int_{0}^{\pi} X S_{in}(n_{x}) dx$$

$$= \frac{1}{\pi} \left[-\frac{x}{n} \left(\cos(nx) \right)^{\frac{\pi}{n}} + \frac{1}{n} \int_{0}^{\pi} \cos(nx) dx \right]$$

$$= \frac{1}{\pi} \left[-\frac{x}{n} \left(\cos(nx) - 0 \right) + \frac{1}{n^{2}} \left(\sin(nx) \right)^{\frac{\pi}{n}} \right]$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi n^{2}} \left(\left(\sin(nx) - \sin(nx) \right)^{\frac{\pi}{n}} \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi n^{2}} \left(\left(\sin(nx) - \sin(nx) \right)^{\frac{\pi}{n}} \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi n^{2}} \left(\left(\sin(nx) - \sin(nx) \right)^{\frac{\pi}{n}} \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi n^{2}} \left(\left(\sin(nx) - \sin(nx) \right)^{\frac{\pi}{n}} \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi n^{2}} \left(\left(\sin(nx) - \sin(nx) \right)^{\frac{\pi}{n}} \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi n^{2}} \left(\left(\sin(nx) - \sin(nx) \right)^{\frac{\pi}{n}} \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(\sin(nx) - \sin(nx) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(\sin(nx) - \sin(nx) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(\sin(nx) - \sin(nx) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(\sin(nx) - \sin(nx) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(\sin(nx) - \sin(nx) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(\sin(nx) - \sin(nx) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right) \right)$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right)^{\frac{\pi}{n}} \right) + \frac{1}{\pi} \left(-\frac{\pi}{n} \left(-1 \right) \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \left(os(nx) + b_n Sin(nx) \right)$$

$$f(x) = \frac{\pi}{4} + \sum_{n=1}^{\infty} \left[\frac{\pi u_n}{(-1)^{n-1}} Cos(ux) + \frac{(-1)}{u} S: w(ux) \right]$$

Fourier Series on an interval (-p, p)

The set of functions The set $\{1, \cos\left(\frac{n\pi x}{p}\right), \sin\left(\frac{m\pi x}{p}\right) | n, m \ge 1\}$ is orthogonal on [-p, p]. Moreover, we have the properties

$$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p} \right) \ dx = 0 \quad \text{and} \quad \int_{-p}^{p} \sin \left(\frac{m \pi x}{p} \right) \ dx = 0 \quad \text{for all} \quad n, m \geq 1,$$

$$\int_{-p}^{p} \cos\left(\frac{n\pi x}{p}\right) \sin\left(\frac{m\pi x}{p}\right) dx = 0 \quad \text{for all} \quad m, n \ge 1,$$

$$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p} \right) \, \cos \left(\frac{m \pi x}{p} \right) \, dx = \left\{ \begin{array}{ll} 0, & m \neq n \\ p, & n = m \end{array} \right. ,$$

$$\int_{-p}^{p} \sin\left(\frac{n\pi x}{p}\right) \sin\left(\frac{m\pi x}{p}\right) dx = \begin{cases} 0, & m \neq n \\ p, & n = m \end{cases}.$$

Fourier Series on an interval (-p, p)

The orthogonality relations provide for an expansion of a function f defined on (-p, p) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{p}\right) + b_n \sin\left(\frac{n\pi x}{p}\right) \right)$$

where

$$a_0 = \frac{1}{p} \int_{-p}^{p} f(x) dx,$$

$$a_n = \frac{1}{p} \int_{-p}^{p} f(x) \cos\left(\frac{n\pi x}{p}\right) dx, \text{ and}$$

$$b_n = \frac{1}{\pi} \int_{-p}^{p} f(x) \sin\left(\frac{n\pi x}{p}\right) dx$$

Find the Fourier series of *f*

$$f(x) = \begin{cases} 1, & -1 < x < 0 \\ -2, & 0 \le x < 1 \end{cases}$$

November 13, 2015 15 / 61

$$a_0 = \frac{1}{1} \int_{-1}^{1} f(x) dx = \int_{-1}^{0} dx + \int_{0}^{1} (-2) dx$$

$$= \times \int_{-1}^{0} -2x \Big|_{0}^{1} = (0-(-1)) - 2(1-0) = -1$$

$$= \times \int_{-1}^{0} -2x \int_{0}^{1} = (0 - (-1)) - 2(1 - 0) = -1$$

$$G_{n} = \frac{1}{1} \int_{-1}^{1} f(x) \left(\cos \left(\frac{n \pi x}{1} \right) dx \right) = \int_{-1}^{0} \cos \left(n \pi x \right) dx - \int_{0}^{1} 2 \cos \left(n \pi x \right) dx$$

$$= \frac{1}{n\pi} \left[\sin(n\pi x) \right]^{0} - \frac{2}{n\pi} \left[\sin(n\pi x) \right]^{0}$$

$$= \frac{1}{n\pi} \left[\sin(-\sin(-n\pi)) \right] - \frac{2}{n\pi} \left[\sin(n\pi) - \sin(0) \right] = 0$$

November 13, 2015

$$b_{n} = \frac{1}{1} \int_{0}^{1} f(x) \sin \left(\frac{n\pi x}{1} \right) dx = \int_{0}^{0} \sin \left(n\pi x \right) dx - \int_{0}^{1} 2 \sin \left(n\pi x \right) dx$$

$$= \frac{-1}{n\pi} \left[\cos \left(n\pi x \right) \right]_{0}^{0} + \frac{2}{n\pi} \left[\cos \left(n\pi x \right) \right]_{0}^{1}$$

$$= \frac{-1}{n\pi} \left[\cos \left(n\pi x \right) \right]_{0}^{1} + \frac{2}{n\pi} \left[\cos \left(n\pi x \right) - \cos \left(n\pi x \right) \right]_{0}^{1}$$

$$= \frac{-1}{n\pi} + \frac{(-1)^{n}}{n\pi} + \frac{2(-1)^{n}}{n\pi} - \frac{2}{n\pi} = \frac{3}{n\pi} \left((-1)^{n} - 1 \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n Cos(n\pi x) + b_n Sin(n\pi x)$$

$$f(x) = \frac{S}{-1} + \sum_{\infty}^{\infty} \frac{u \mu}{3} ((-1)_{\infty} - 1) \sum_{n} (u \mu x)$$

November 13, 2015 18 / 61