November 16 Math 2306 sec. 53 Fall 2018

Section 17: Fourier Series: Trigonometric Series

Suppose $f(x)$ is defined for $-\pi<x<\pi$. We would like to know how to write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots such that ${ }^{1}$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

${ }^{1}$ We'll write $\frac{a_{0}}{2}$ as opposed to a_{0} purely for convenience.

Orthogonal Set of Functions

The set $\{1, \cos (n x), \sin (n x) \mid n=1,2,3, \ldots\}$ is orthogonal on the interval $[-\pi, \pi]$.

This means that if we consider two functions $\phi_{1}(x)$ and $\phi_{2}(x)$ in this set, then

$$
\begin{aligned}
\int_{-\pi}^{\pi} \phi_{1}(x) \phi_{2}(x) d x & =\left\{\begin{array}{ll}
0, & \phi_{1} \neq \phi_{2} \\
\pi, & \phi_{1}=\phi_{2}
\end{array} \text { and } \phi_{1}(x) \neq 1\right. \\
\int_{-\pi}^{\pi} 1 \cdot 1 d x & =2 \pi
\end{aligned}
$$

Finding an Example Coefficient

For a known function f defined on $(-\pi, \pi)$, assume there is such a series ${ }^{2}$. Let's find the coefficient b_{4}.

We start by assuming that

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Then we multiplied through by $\sin 4 x$

$$
f(x) \sin 4 x=\frac{a_{0}}{2} \sin 4 x+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \sin 4 x+b_{n} \sin n x \sin 4 x\right) .
$$

[^0]
Finding an Example Coefficient

Then we integrate each side from $-\pi$ to π assuming that it is OK to interchange the order of summation and integration.
$\int_{-\pi}^{\pi} f(x) \sin 4 x d x=\frac{a_{0}}{2} \int_{-\pi}^{\pi} \sin 4 x d x+$

$$
\sum_{n=1}^{\infty}\left(a_{n} \int_{-\pi}^{\pi} \cos n x \sin 4 x d x+b_{n} \int_{-\pi}^{\pi} \sin n x \sin 4 x d x\right)
$$

Now we use the known orthogonality property. Recall that $\int_{-\pi}^{\pi} \sin 4 x d x=0$, and that for every $n=1,2, \ldots$

$$
\int_{-\pi}^{\pi} \cos n x \sin 4 x d x=0
$$

So the constant and all cosine terms are gone leaving

$$
\int_{-\pi}^{\pi} f(x) \sin 4 x d x=\sum_{n=1}^{\infty}\left(b_{n} \int_{-\pi}^{\pi} \sin n x \sin 4 x d x\right) .
$$

But we also know that

$$
\int_{-\pi}^{\pi} \sin n x \sin 4 x d x=0, \text { for } n \neq 4, \text { and } \quad \int_{-\pi}^{\pi} \sin 4 x \sin 4 x d x=\pi .
$$

Hence the sum reduces to the single term

$$
\int_{-\pi}^{\pi} f(x) \sin 4 x d x=\pi b_{4}
$$

from which we determine

$$
b_{4}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 4 x d x
$$

Finding Fourier Coefficients

Note that there was nothing special about seeking the $4^{\text {th }}$ sine coefficient b_{4}. We could have just as easily sought b_{m} for any positive integer m. We would simply start by introducing the factor $\sin (m x)$.

Moreover, using the same orthogonality property, we could pick on the a's by starting with the factor $\cos (m x)$-including the constant term since $\cos (0 \cdot x)=1$. The only minor difference we want to be aware of is that

$$
\int_{-\pi}^{\pi} \cos ^{2}(m x) d x= \begin{cases}2 \pi, & m=0 \\ \pi, & m \geq 1\end{cases}
$$

Careful consideration of this sheds light on why it is conventional to take the constant to be $\frac{a_{0}}{2}$ as opposed to just a_{0}.

The Fourier Series of $f(x)$ on $(-\pi, \pi)$

The Fourier series of the function f defined on $(-\pi, \pi)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Where

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \text { and } \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Example
Find the Fourier series of the piecewise defined function

$$
f(x)=\left\{\begin{array}{cc}
0, & -\pi<x<0 \\
x, & 0 \leq x<\pi
\end{array}\right.
$$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \operatorname{cor}(n x)+b_{n} \sin (n x)\right)
$$

Using the formulas

$$
\begin{aligned}
& \text { Using the formulas } \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi}\left(\int_{-\pi}^{0} f(x) d x+\int_{0}^{\pi} f(x) d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left(\int_{-\pi}^{0} 0 d x+\int_{0}^{\pi} x d x\right)=\frac{1}{\pi}\left(\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{1}{\pi}\left(\frac{\pi}{2}\right)=\frac{\pi}{2}\right. \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi}\left(\int_{-\pi}^{0} 0 \cdot \cos (n x) d x+\int_{0}^{\pi} x \cos (n x) d x\right) \\
& =\frac{1}{\pi}\left[\frac{x}{n} \sin (n x)-\left.\frac{1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{1}{\pi}\left[\frac{\pi}{n} \sin (n \pi)-\frac{1}{n^{2}} \operatorname{cor}(n \pi)-\left(0-\frac{1}{n^{2}} \cos (0)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sin (n \pi)=0 \text { for } n=1,3,3, \ldots \\
& \operatorname{Cos}(n \pi)=\left\{\begin{array}{cc}
1, & n \text {-even } \\
-1, & n \text { - odd }
\end{array}=(-1)^{n}\right. \\
& a_{n}=\frac{1}{\pi}\left(\frac{-1}{n^{2}}(-1)^{n}+\frac{1}{n^{2}}\right)=\frac{1-(-1)^{n}}{n^{2} \pi} \\
& a_{n}=\frac{1-(-1)^{n}}{n^{2} \pi} \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi}\left(\int_{-\pi}^{0} 0 \cdot \sin (n x) d x+\int_{0}^{\pi} x \sin (n x) d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left(\frac{-\frac{x}{n} \cos (n x)+\left.\frac{1}{n^{2}} \sin (n x)\right|_{0} ^{\pi}}{=\frac{1}{\pi}\left(\frac{-\pi}{n} \cos (n \pi)+\frac{1}{n^{2}} \sin (n \pi)-\left(0+\frac{1}{n^{2}} \sin (0)\right)\right)} \begin{array}{c}
0^{\prime \prime} \\
0_{n}^{\prime \prime} \\
b_{n}=\frac{1}{\pi}\left(\frac{-\pi}{n}\right) \operatorname{co1}(n \pi)=\frac{-(-1)^{n}}{n}=\frac{(-1)^{n+1}}{n} \\
b_{n}=\frac{(-1)^{n+1}}{n}
\end{array}\right.
\end{aligned}
$$

$$
a_{0}=\frac{\pi}{2} \text { so } \frac{a_{0}}{2}=\frac{\pi}{4}
$$

$$
f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left(\frac{1-(-1)^{n}}{n^{2} \pi} \operatorname{Cos}(n x)+\frac{(-1)^{n+1}}{n} \sin (n x)\right)
$$

Fourier Series on an interval $(-p, p)$

The set of functions $\left\{1, \cos \left(\frac{n \pi x}{p}\right), \left.\sin \left(\frac{m \pi x}{p}\right) \right\rvert\, n, m \geq 1\right\}$ is orthogonal on $[-p, p]$. Moreover, we have the properties
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) d x=0$ and $\int_{-p}^{p} \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $n, m \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $m, n \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \cos \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}, \quad \int_{-p}^{p} 1 \cdot 1 d x=2 p\right.$
$\int_{-p}^{p} \sin \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$.

Fourier Series on an interval ($-p, p$)

The orthogonality relations provide for an expansion of a function f defined on $(-p, p)$ as

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, \quad \text { and } \\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
\end{aligned}
$$

[^0]: ${ }^{2}$ We will also assume that the order of integrating and summing can be interchanged.

