Nov. 18 Math 1190 sec. 51 Fall 2016

Section 5.3: The Fundamental Theorem of Calculus

Theorem: The Fundamental Theorem of Calculus (part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)
To use the FTC, we
(i) find an antiderivative F for the integrand, then
(ii) evaluate the difference $F(b)-F(a)$.

Evaluate the definite integral using the FTC

$$
\begin{aligned}
& \int_{-e^{2}}^{-2} \frac{d s}{s}=\int_{-e^{2}}^{-2} \frac{1}{s} d s=\left.\ln |s|\right|_{-e^{2}} ^{-2} \\
&=\ln |-2|-\ln \left|-e^{2}\right| \\
&=\ln 2-\ln e^{2} \\
&=\ln 2-2 \ln e=\ln 2-2
\end{aligned}
$$

Question
Given that $\frac{d}{d x} x e^{x}=e^{x}+x e^{x}$, evaluate the integral

$$
\int_{1}^{2}\left(e^{x}+x e^{x}\right) d x=\left.x e^{x}\right|_{1} ^{2}=2 e^{2}-1 e^{1}=2 e^{2}-e
$$

(a) $2 e^{2}$
(b) $2 e^{2}-e$
(c) $x e^{x}$
(d) $3 e^{2}-2 e$

Finding Area

Figure: Use the FTC to find the area of the region under the graph of $y=\frac{1}{1+x^{2}}$, bounded below by the x-axis, and between the vertical lines $x=-1$ and $x=1$.

Since $y=\frac{1}{x^{2}+1}$ is positive,

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{1} \frac{1}{x^{2}+1} d x \\
& =\left.\tan ^{-1} x\right|_{-1} ^{1}=\tan ^{-1} 1-\tan ^{-1}(-1) \\
& =\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

An Observation

If f is differentiable on $[a, b]$, note that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

This says that:
The integral of the rate of change of f over the interval $[a, b]$ is the net change of the function, $f(b)-f(a)$, over this interval.

Rectilinear Motion

If the position of a particle, relative to an origin, moving along a straight line is $s(t)$, then it's velocity is

$$
v(t)=s^{\prime}(t) .
$$

The net change result tells us that the net distance traveled on the time interval $[a, b]$, final position minus starting position, is

$$
s(b)-s(a)=\int_{a}^{b} v(t) d t
$$

We can say that the final position

$$
s(b)=s(a)+\int_{a}^{b} v(t) d t .
$$

Example
A ball is dropped from a $300 \mathrm{ft} \mathrm{cliff}. \mathrm{It's} \mathrm{velocity} \mathrm{is} v(t)=-32 t \mathrm{ft} / \mathrm{sec}$. Determine the height of the ball after 2 seconds.

Letting $s(t)$ be the height in ft . (relative to the $\begin{gathered}\text { ground) }\end{gathered}$

$$
\begin{aligned}
s(0) & =300 \mathrm{ft} \\
s(2) & =s(0)+\int_{0}^{2} v(t) d t \\
& =300+\int_{0}^{2}(-32 t) d t=300+\left(-\left.16 t^{2}\right|_{0} ^{2}\right. \\
& =300+\left(-16 \cdot 2^{2}-\left(-16 \cdot 0^{2}\right)\right)=300-64=236
\end{aligned}
$$

The height is 236 ft C 2 seconds.

Section 5.4: Properties of the Definite Integral

Suppose that f and g are integable on $[a, b]$ and let k be constant.
I. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
II. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
II. $\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

Examples
Suppose $\int_{1}^{4} f(x) d x=3$ and $\int_{1}^{4} g(x) d x=-7$. Evaluate
(i) $\int_{1}^{4}-2 f(x) d x=-2 \int_{1}^{4} f(x) d x=-2(3)=-6$

Propents I
(ii)

$$
\begin{aligned}
\int_{1}^{4}[f(x)+3 g(x)] d x & =\int_{1}^{4} f(x) d x+\int_{1}^{4} 3 g(x) d x \quad \text { property II } \\
& =\int_{1}^{4} f(x) d x+3 \int_{1}^{4} g(x) d x \quad \text { property I } \\
& =3+3(-7)=3-21=-18
\end{aligned}
$$

Question

Suppose $\int_{1}^{4} f(x) d x=3$ and $\int_{1}^{4} g(x) d x=-7$. Evaluate
$\int_{1}^{4}[g(x)-3 f(x)] d x=\int_{1}^{4} f(x) d x-3 \int_{1}^{4} f(x) d x$
(a) 16
$=-7-3 \cdot 3=-16$
(b) -16
(c) -2
(d) 2

The Sum/Difference in General

If $f_{1}, f_{2}, \ldots, f_{n}$ are integrable on $[a, b]$ and $k_{1}, k_{2}, \ldots, k_{n}$ are constants, then

$$
\begin{gathered}
\int_{a}^{b}\left[k_{1} f_{1}(x)+k_{2} f_{2}(x)+\cdots+k_{n} f_{n}(x)\right] d x= \\
k_{1} \int_{a}^{b} f_{1}(x) d x+k_{2} \int_{a}^{b} f_{2}(x) d x+\cdots+k_{n} \int_{a}^{b} f_{n}(x) d x
\end{gathered}
$$

Example

$$
\begin{aligned}
\text { Evaluate } & \int_{1}^{2} \frac{x^{3}+2 x^{2}+4}{x} d x \\
= & \int_{1}^{2}\left(\frac{x^{3}}{x}+\frac{2 x^{2}}{x}+\frac{4}{x}\right) d x=\int_{1}^{2}\left(x^{2}+2 x+\frac{4}{x}\right) d x \\
= & \int_{1}^{2} x^{2} d x+2 \int_{1}^{2} x d x+4 \int_{1}^{2} \frac{1}{x} d x \\
= & \left.\frac{x^{3}}{3}\right|_{1} ^{2}+\left.2 \frac{x^{2}}{2}\right|_{1} ^{2}+\left.4 \ln |x|\right|_{1} ^{2}=\left(\frac{2^{3}}{3}-\frac{11^{3}}{3}\right)+\left(2^{2}-1^{2}\right)+(4 \ln 2-4 \ln 1) \\
= & \frac{8}{3}-\frac{1}{3}+4-1+4 \ln 2-0
\end{aligned}=\frac{7}{3}+3+4 \ln 2 .
$$

Question

Evaluate $\int_{0}^{1}\left(3 x^{2}+4 x-2\right) d x=x^{3}+2 x^{2}-\left.2 x\right|_{0} ^{1}$
(a) 5
(b) $x^{3}+2 x^{2}-2 x$
$=1$
(C) 1
(d) $6 x+4$

