Nov. 18 Math 1190 sec. 52 Fall 2016

Section 5.3: The Fundamental Theorem of Calculus

Theorem: The Fundamental Theorem of Calculus (part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)
To use the FTC, we
(i) find an antiderivative F for the integrand, then
(ii) evaluate the difference $F(b)-F(a)$.

Evaluate the definite integral using the FTC

$$
\begin{aligned}
\int_{-e^{2}}^{-2} \frac{d s}{s}=\int_{-e^{2}}^{-2} \frac{1}{s} d s & =\left.\ln |s|\right|_{-e^{2}} ^{-2} \\
& =\ln |-2|-\ln \left|-e^{2}\right| \\
& =\ln 2-\ln e^{2} \\
& =\ln 2-2 \ln e \\
& =\ln 2-2 \cdot \mid \\
& =\ln 2-2
\end{aligned}
$$

Question

Given that $\frac{d}{d x} x e^{x}=e^{x}+x e^{x}$, evaluate the integral
$\int_{1}^{2}\left(e^{x}+x e^{x}\right) d x=\left.x e^{x}\right|_{1} ^{2}=2 e^{2}-1 \cdot e^{1}=2 e^{2}-e$
(a) $2 e^{2}$
(b) $2 e^{2}-e$
(c) $x e^{x}$
(d) $3 e^{2}-2 e$

Finding Area

Figure: Use the FTC to find the area of the region under the graph of $y=\frac{1}{1+x^{2}}$, bounded below by the x-axis, and between the vertical lines $x=-1$ and $x=1$.

Since y is continuous and positive

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{1} \frac{1}{x^{2}+1} d x=\left.\tan ^{-1} x\right|_{-1} ^{1} \\
& =\tan ^{-1} 1-\tan ^{-1}(-1) \\
& =\frac{\pi}{4}-\left(\frac{-\pi}{4}\right) \\
& =\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

An Observation

If f is differentiable on $[a, b]$, note that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

This says that:
The integral of the rate of change of f over the interval $[a, b]$ is the net change of the function, $f(b)-f(a)$, over this interval.

Example
Fluid is pumped into a reservoir at a rate of $R(t)$ gallons per minute. Consider the integral

$$
\int_{0}^{10} R(t) d t=2000
$$

(a) What are the units of this integral?
$R(t)$ is in $\mathrm{gal} / \mathrm{min}$ Change in volume ie. $R(t)=V^{\prime}(t)$ if $V(t)$ is the volume.

Here $d t$ is in units of minutes The integral, 2000 , is in gallons.

Example
Fluid is pumped into a reservoir at a rate of $R(t)$ gallons per minute. Consider the integral

$$
\int_{0}^{10} R(t) d t=2000
$$

(b) Interpret this integral.

I t's the net change in volume.
it's the amount of fluid added dunning that 10 minutes.

Section 5.4: Properties of the Definite Integral

Suppose that f and g are integable on $[a, b]$ and let k be constant.
I. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
II. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
II. $\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

The Sum/Difference in General

If $f_{1}, f_{2}, \ldots, f_{n}$ are integrable on $[a, b]$ and $k_{1}, k_{2}, \ldots, k_{n}$ are constants, then

$$
\begin{gathered}
\int_{a}^{b}\left[k_{1} f_{1}(x)+k_{2} f_{2}(x)+\cdots+k_{n} f_{n}(x)\right] d x= \\
k_{1} \int_{a}^{b} f_{1}(x) d x+k_{2} \int_{a}^{b} f_{2}(x) d x+\cdots+k_{n} \int_{a}^{b} f_{n}(x) d x
\end{gathered}
$$

Example

$$
\begin{aligned}
\text { Evaluate } & \quad \int_{1}^{2} \frac{x^{3}+2 x^{2}+4}{x} d x=\int_{1}^{2}\left(\frac{x^{3}}{x}+\frac{2 x^{2}}{x}+\frac{4}{x}\right) d x \\
= & \int_{1}^{2}\left(x^{2}+2 x+\frac{4}{x}\right) d x=\int_{1}^{2} x^{2} d x+2 \int_{1}^{2} x d x+4 \int_{1}^{2} \frac{1}{x} d x \\
= & \left.\frac{x^{3}}{3}\right|_{1} ^{2}+\left.2 \cdot \frac{x^{2}}{2}\right|_{1} ^{2}+\left.4 \ln |x|\right|_{1} ^{2} \\
= & \frac{2^{3}}{3}-\frac{1^{3}}{3}+\left(2^{2}-1^{2}\right)+(4 \ln |2|-4 \ln 11 \mid) \\
= & \frac{8}{3}-\frac{1}{3}+(4-1)+4 \ln 2-4 \cdot 0=\frac{7}{3}+3+4 \ln 2=\frac{16}{3}+4 \ln 2
\end{aligned}
$$

Question

Evaluate $\int_{0}^{1}\left(3 x^{2}+4 x-2\right) d x=x^{3}+2 x^{2}-\left.2 x\right|_{0} ^{1}$
(a) 5

$$
=1^{3}+2.1^{2}-2.1-(0+0-0)
$$

(b) $x^{3}+2 x^{2}-2 x$

$$
=1
$$

(C) 1
(d) $6 x+4$

Properties of Definite Integrals Continued...

If f is integrable on any interval containing the numbers a, b, and c, then
(IV) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

To integrate from a to b, we can go from a to c and from c to b, and add the results.

Example
Suppose $F^{\prime}(x)=f(x)$ for all x. Show that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

By the FTC $\quad \int_{a}^{b} f(x) d x=F(b)-F(a)$

$$
\begin{aligned}
\int_{a}^{c} f(x) d x & +\int_{c}^{b} f(x) d x=(F(c)-F(a))+(F(b)-F(c)) \\
& =F(c)-F(a)+F(b)-F(c) \\
& =F(b)-F(a)=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Example
Suppose

$$
\int_{-1}^{4} f(x) d x=-2, \quad \text { and } \quad \int_{2}^{4} f(x) d x=3
$$

Evaluate $\int_{-1}^{2} f(x) d x$

$$
\text { Note } \int_{-1}^{4} f(x) d x=\int_{-1}^{2} f(x) d x+\int_{2}^{4} f(x) d x
$$

$$
\Rightarrow \quad-2=\int_{-1}^{2} f(x) d x+3
$$

$$
\Rightarrow \quad \int_{-1}^{2} f(x) d x=-2-3=-5
$$

Properties: Bounds on Integrals

(V) If $f(x) \leq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
(VI) And, as an immediate consequence of (V), if $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

If f is continuous on $[a, b]$, we can take m to be the absolute minimum value and M the absolute maximum value of f as guaranteed by the Extreme Value Theorem.

Example of Bounding

Not every integral can be evaluated in a straight forward way. For example $f(x)=e^{-x^{2}}$ does not have an elementary antiderivative* We can show that

$$
\frac{1}{e} \leq e^{-x^{2}} \leq 1 \quad \text { for all } x \text { in } \quad[0,1] .
$$

So even though evaluating $\int_{0}^{1} e^{-x^{2}} d x$ is not directly possible, we can say that

$$
\frac{1}{e}=\frac{1}{e}(1-0) \leq \int_{0}^{1} e^{-x^{2}} d x \leq 1(1-0)=1
$$

[^0]
[^0]: *This function is a scaled version of the normal distribution function in probability and statistics.

