November 18 Math 2306 sec 51 Fall 2015

Section 11.2: Fourier Series

The **Fourier series** of the function f defined on $(-\pi, \pi)$ is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right).$$

Where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \text{ and}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Fourier Series on an interval (-p, p)

The orthogonality relations provide for an expansion of a function f defined on (-p, p) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{p}\right) + b_n \sin\left(\frac{n\pi x}{p}\right) \right)$$

where

$$a_0 = \frac{1}{p} \int_{-p}^{p} f(x) dx,$$

$$a_n = \frac{1}{p} \int_{-p}^{p} f(x) \cos\left(\frac{n\pi x}{p}\right) dx, \text{ and}$$

$$b_n = \frac{1}{\pi} \int_{-p}^{p} f(x) \sin\left(\frac{n\pi x}{p}\right) dx$$

An interesting observation...

Note that the constant value is

$$\frac{a_0}{2}=\frac{1}{2p}\int_{-p}^p f(x)\,dx$$

Example:

$$f(x) = \begin{cases} 1, & -1 < x < 0 \\ -2, & 0 \le x < 1 \end{cases}$$

Example

We determined the Fourier series for this function is

$$f(x) = -\frac{1}{2} + \sum_{n=1}^{\infty} \frac{3((-1)^n - 1)}{n\pi} \sin(n\pi x).$$

Note that *f* is piecewise continuous, but has a jump discontinuity at zero. Every term in the above sum however is continuous. A reasonable question here is whether the infinite sum is in fact continuous, and if so what is the connection between the series and the function at the discontinuity?

Convergence of the Series

Theorem: If f is continuous at x_0 in (-p, p), then the series converges to $f(x_0)$ at that point. If f has a jump discontinuity at the point x_0 in (-p, p), then the series **converges in the mean** to the average value

$$\frac{1}{2} \left(\lim_{x \to x_0^-} f(x) + \lim_{x \to x_0^+} f(x) \right)$$

at that point.

We can also note that it is possible to evaluate the series outside of the original interval. The series extends the original function into one that is 2p-periodic.

Find the Fourier Series for f(x) = x, -1 < x < 1

$$\rho: 1$$

$$Q_{0}: \frac{1}{1} \int_{-1}^{1} f(x) dx = \int_{-1}^{1} x dx = \frac{x^{2}}{2} \int_{1}^{1} = \frac{1^{2}}{2} - \frac{(-1)^{2}}{2} = 0$$

$$Q_{0}: \frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx = \int_{1}^{1} x \cos (n\pi x) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi x}{1}\right) dx$$

$$= \frac{1}{1} \int_{1}^{1} f(x) \cos \left(\frac{n\pi$$

$$\begin{aligned}
&= \frac{1}{(n\pi)^2} \left(\cos(n\pi) - \frac{1}{(n\pi)^2} \left(\operatorname{or}(-n\pi) \right) \right) = 0 \\
&= \frac{1}{n\pi} \int_{-1}^{1} f(x) \sin\left(\frac{n\pi x}{1}\right) dx = \int_{-1}^{1} x \sin(n\pi x) dx \\
&= \frac{-x}{n\pi} \left(\cos(n\pi x) \right) \Big|_{-1}^{1} + \frac{1}{n\pi} \int_{-1}^{1} \left(\cos(n\pi x) dx \right) dx \\
&= \frac{-1}{n\pi} \left(\cos(n\pi x) - \frac{1}{n\pi} \cos(-n\pi) + \frac{1}{(n\pi)^2} \sin(n\pi x) dx \right) \\
&= \frac{-1}{n\pi} \left(\cos(n\pi x) - \frac{1}{n\pi} \cos(-n\pi) + \frac{1}{(n\pi)^2} \sin(n\pi x) dx \right) \\
&= \frac{-1}{n\pi} \left(\cos(n\pi x) - \frac{1}{n\pi} \cos(-n\pi) + \frac{1}{(n\pi)^2} \sin(n\pi x) dx \right) \\
&= \frac{-1}{n\pi} \left(\cos(n\pi x) - \frac{1}{n\pi} \cos(-n\pi) + \frac{1}{(n\pi)^2} \sin(n\pi x) dx \right) \\
&= \frac{-1}{n\pi} \cos(n\pi x) dx \\
&= \frac{-1}{n\pi} \cos(n\pi$$

$$= -\frac{2(-1)^{n}}{n\pi} + \frac{1}{(n\pi)^{2}} Sin(n\pi) - \frac{1}{(n\pi)^{2}} Sin(-n\pi)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n (os(n\pi x) + b_n Sin(n\pi x))$$

$$f(x) = \sum_{n \in \mathbb{N}} \frac{2(-1)^n}{n \pi} \operatorname{Sin}(n\pi x)$$

Figure: Plot of f(x) = x for -1 < x < 1

Figure: Plot of f(x) = x for -1 < x < 1 with two terms of the Fourier series.

Figure: Plot of f(x) = x for -1 < x < 1 with 10 terms of the Fourier series

Figure: Plot of f(x) = x for -1 < x < 1 with the Fourier series plotted on (-3,3)

17 / 46

Symmetry

Suppose f is defined on an interval containing x and -x.

If f(-x) = f(x) for all x, then f is said to be **even**.

If f(-x) = -f(x) for all x, then f is said to be **odd**.

For example, $f(x) = x^n$ is even if n is even and is odd if n is odd. The trigonometric function $g(x) = \cos x$ is even, and $h(x) = \sin x$ is odd.

Integrals on symmetric intervals

If f is an even function on (-p, p), then

$$\int_{-\rho}^{\rho} f(x) dx = 2 \int_{0}^{\rho} f(x) dx.$$

If f is an odd function on (-p, p), then

$$\int_{-p}^{p} f(x) dx = 0.$$

Products of Even and Odd functions

So, suppose f is even on (-p, p). This tells us that $f(x) \cos(nx)$ is even for all p and $f(x) \sin(nx)$ is odd for all p.

And, if f is odd on (-p, p). This tells us that $f(x) \sin(nx)$ is even for all p and $f(x) \cos(nx)$ is odd for all p

Fourier Series of an Even Function

If f is even on (-p, p), then the Fourier series of f has only constant and cosine terms. Moreover

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{\rho}\right)$$

where

$$a_0 = \frac{2}{p} \int_0^p f(x) \, dx$$

and

$$a_n = \frac{2}{p} \int_0^p f(x) \cos\left(\frac{n\pi x}{p}\right) dx.$$

Fourier Series of an Odd Function

If f is odd on (-p, p), then the Fourier series of f has only sine terms. Moreover

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{p}\right)$$

where

$$b_n = \frac{2}{p} \int_0^p f(x) \sin\left(\frac{n\pi x}{p}\right) dx.$$

Find the Fourier series of f

$$f(x) = \begin{cases} x + \pi, & -\pi < x < 0 \\ \pi - x, & 0 \le x < \pi \end{cases}$$

Plot to cheek for symmetry:

$$a_{o} = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) dx = \frac{2}{\pi} \left[\pi x - \frac{x^{2}}{2} \right]_{0}^{\pi}$$

$$: \frac{2}{\pi} \left[\pi^2 - \frac{\pi^2}{2} - 0 \right] : \frac{2}{\pi} \left(\frac{\pi^2}{2} \right) = \pi$$

$$Q_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) Cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) Cos(nx) dx$$

$$= \frac{2}{\pi} \left[\frac{(\pi - x)}{n} Sin(nx) \right]_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} Sin(nx) dx$$

$$= \frac{2}{\pi} \left[\frac{-1}{n^{2}} Cos(nx) \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{-1}{n^{2}} Cos(nx) - Cos O \right]$$

$$= \frac{-2}{\pi n^{2}} \left(Cos(n\pi) - Cos O \right)$$

$$= \frac{2}{\pi n^{2}} \left((-1)^{n} - 1 \right) = \frac{2}{\pi n^{2}} \left(1 - (-1)^{n} \right)$$

$$f(x) = \frac{a_0}{z} + \sum_{n=1}^{\infty} a_n Cos(n \times)$$

$$f(x) = \frac{\pi}{2} + \sum_{\infty} \frac{3(1-(-1)^{2})}{\pi n^{2}} C_{\infty}(nx)$$

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for 0 < x < p. We can **extend** f to the left, to the interval (-p, 0), as either an even function, or as an odd function. Then we can express f with **two distinct** series:

Half range cosine series
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{p}\right)$$

where $a_0 = \frac{2}{p} \int_0^p f(x) \, dx$ and $a_n = \frac{2}{p} \int_0^p f(x) \cos\left(\frac{n\pi x}{p}\right) \, dx$.

Half range sine series
$$f(x) = \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{p}\right)$$

where $b_n = \frac{2}{p} \int_0^p f(x) \sin\left(\frac{n\pi x}{p}\right) dx$.

Extending a Function to be Odd

Figure: f(x) = p - x, 0 < x < p together with its **odd** extension.

Extending a Function to be Even

Figure: f(x) = p - x, 0 < x < p together with its **even** extension.