
November 18 Math 2306 sec 51 Fall 2015

Section 11.2: Fourier Series

The Fourier series of the function f defined on (−π, π) is given by

f (x) =
a0

2
+
∞∑

n=1

(an cos nx + bn sin nx) .

Where

a0 =
1
π

∫ π

−π
f (x)dx ,

an =
1
π

∫ π

−π
f (x) cos nx dx , and

bn =
1
π

∫ π

−π
f (x) sin nx dx

November 18, 2015 1 / 46



Fourier Series on an interval (−p,p)
The orthogonality relations provide for an expansion of a function f
defined on (−p,p) as

f (x) =
a0

2
+
∞∑

n=1

(
an cos

(
nπx

p

)
+ bn sin

(
nπx

p

))
where

a0 =
1
p

∫ p

−p
f (x)dx ,

an =
1
p

∫ p

−p
f (x) cos

(
nπx

p

)
dx , and

bn =
1
π

∫ p

−p
f (x) sin

(
nπx

p

)
dx
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An interesting observation...

Note that the constant value is

a0

2
=

1
2p

∫ p

−p
f (x)dx
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Example:

f (x) =
{

1, −1 < x < 0
−2, 0 ≤ x < 1
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Example

We determined the Fourier series for this function is

f (x) = −1
2
+
∞∑

n=1

3((−1)n − 1)
nπ

sin(nπx).

Note that f is piecewise continuous, but has a jump discontinuity at
zero. Every term in the above sum however is continuous. A
reasonable question here is whether the infinite sum is in fact
continuous, and if so what is the connection between the series and
the function at the discontinuity?
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Convergence of the Series

Theorem: If f is continuous at x0 in (−p,p), then the series converges
to f (x0) at that point. If f has a jump discontinuity at the point x0 in
(−p,p), then the series converges in the mean to the average value

1
2

(
lim

x→x−
0

f (x) + lim
x→x+

0

f (x)

)

at that point.

We can also note that it is possible to evaluate the series outside of the
original interval. The series extends the original function into one that
is 2p-periodic.

November 18, 2015 6 / 46



Find the Fourier Series for f (x) = x , −1 < x < 1
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Figure: Plot of f (x) = x for −1 < x < 1
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Figure: Plot of f (x) = x for −1 < x < 1 with two terms of the Fourier series.
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Figure: Plot of f (x) = x for −1 < x < 1 with 10 terms of the Fourier series
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Figure: Plot of f (x) = x for −1 < x < 1 with the Fourier series plotted on
(−3,3)
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Symmetry

Suppose f is defined on an interval containing x and −x .

If f (−x) = f (x) for all x , then f is said to be even.

If f (−x) = −f (x) for all x , then f is said to be odd.

For example, f (x) = xn is even if n is even and is odd if n is odd. The
trigonometric function g(x) = cos x is even, and h(x) = sin x is odd.

November 18, 2015 18 / 46



Integrals on symmetric intervals

If f is an even function on (−p,p), then∫ p

−p
f (x)dx = 2

∫ p

0
f (x)dx .

If f is an odd function on (−p,p), then∫ p

−p
f (x)dx = 0.
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Products of Even and Odd functions

Even × Even = Even,

and
Odd × Odd = Even.

While
Even × Odd = Odd.

So, suppose f is even on (−p,p). This tells us that f (x) cos(nx) is
even for all n and f (x) sin(nx) is odd for all n.

And, if f is odd on (−p,p). This tells us that f (x) sin(nx) is even for all
n and f (x) cos(nx) is odd for all n
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Fourier Series of an Even Function
If f is even on (−p,p), then the Fourier series of f has only constant
and cosine terms. Moreover

f (x) =
a0

2
+
∞∑

n=1

an cos
(

nπx
p

)
where

a0 =
2
p

∫ p

0
f (x)dx

and

an =
2
p

∫ p

0
f (x) cos

(
nπx

p

)
dx .
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Fourier Series of an Odd Function

If f is odd on (−p,p), then the Fourier series of f has only sine terms.
Moreover

f (x) =
∞∑

n=1

bn sin
(

nπx
p

)
where

bn =
2
p

∫ p

0
f (x) sin

(
nπx

p

)
dx .
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Find the Fourier series of f

f (x) =
{

x + π, −π < x < 0
π − x , 0 ≤ x < π
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Half Range Sine and Half Range Cosine Series
Suppose f is only defined for 0 < x < p. We can extend f to the left, to
the interval (−p,0), as either an even function, or as an odd function.
Then we can express f with two distinct series:

Half range cosine series f (x) =
a0

2
+
∞∑

n=1

an cos
(

nπx
p

)

where a0 =
2
p

∫ p

0
f (x)dx and an =

2
p

∫ p

0
f (x) cos

(
nπx

p

)
dx .

Half range sine series f (x) =
∞∑

n=1

an cos
(

nπx
p

)

where bn =
2
p

∫ p

0
f (x) sin

(
nπx

p

)
dx .
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Extending a Function to be Odd

Figure: f (x) = p − x , 0 < x < p together with its odd extension.
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Extending a Function to be Even

Figure: f (x) = p − x , 0 < x < p together with its even extension.
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