November 18 Math 2306 sec 54 Fall 2015

Section 11.2: Fourier Series

The Fourier series of the function f defined on $(-\pi, \pi)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Where

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \text { and } \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Fourier Series on an interval ($-p, p$)

The set of functions The set $\left\{1, \cos \left(\frac{n \pi x}{p}\right), \left.\sin \left(\frac{m \pi x}{p}\right) \right\rvert\, n, m \geq 1\right\}$ is orthogonal on $(-p, p)$. Moreover, we have the properties
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) d x=0$ and $\int_{-p}^{p} \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $n, m \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $m, n \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \cos \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$,
$\int_{-p}^{p} \sin \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$.

Fourier Series on an interval ($-p, p$)

The orthogonality relations provide for an expansion of a function f defined on $(-p, p)$ as

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right)
$$

where

$$
\begin{aligned}
a_{0} & =\frac{1}{p} \int_{-p}^{p} f(x) d x, \\
a_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, \quad \text { and } \\
b_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
\end{aligned}
$$

An interesting observation...

Note that the constant value is

$$
\frac{a_{0}}{2}=\frac{1}{2 p} \int_{-p}^{p} f(x) d x
$$

The integral of f over $[-p, p]$ divided b_{y} $2 p=p-(-p)$ (length of the interval).
$\frac{a_{0}}{2}$ is the average value of f on $[-p, p]$.

$$
f(x)=\left\{\begin{array}{lc}
1, & -1<x<0 \\
-2, & 0 \leq x<1
\end{array} \quad \text { is }(-1,1)\right. \text { here, so }
$$

Find the Fourier series of f

$$
\begin{aligned}
& a_{0}= \frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} d x+\int_{0}^{1}(-2) d x \\
&=\left.x\right|_{-1} ^{0}+\left[-\left.2 x\right|_{0} ^{1}=0-(-1)+[-2-0]=-1\right. \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \operatorname{Cos}\left(\frac{n \pi x}{1}\right) d x=\int_{-1}^{0} \cos (n \pi x) d x+\int_{0}^{1}(-2) \cos (n \pi x) d x \\
&=\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}-\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{0} ^{1} \\
&=\frac{1}{n \pi} \sin (0)-\frac{1}{n \pi} \sin (-n \pi)-\left[\frac{2}{n \pi} \sin (n \pi)-\frac{2}{n \pi} \sin 0\right]=0
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \sin \left(\frac{n \pi x}{1}\right) d x \\
& =\int_{-1}^{0} \sin (n \pi x) d x+\int_{0}^{1}(-2) \sin (n \pi x) d x \\
& =\left.\frac{-1}{n \pi} \cos (n \pi x)\right|_{-1} ^{0}+\left.\frac{2}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
& =\frac{-1}{n \pi}[\cos 0-\cos (-n \pi)]+\frac{2}{n \pi}[\cos (n \pi)-\cos 0] \\
& =\frac{-1}{n \pi}+\frac{(-1)^{n}}{n \pi}+\frac{2(-1)^{n}}{n \pi}-\frac{2}{n \pi}=\frac{3}{n \pi}\left((-1)^{n}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x) \\
& f(x)=\frac{-1}{2}+\sum_{n=1}^{\infty} \frac{3}{n \pi}\left((-1)^{n}-1\right) \sin (n \pi x)
\end{aligned}
$$

Q: f is discontinuous © $x=0$.
Is the sum continuous $f x=0$?
what is the connection between f and the series?

Convergence of the Series

Theorem: If f is continuous at x_{0} in $(-p, p)$, then the series converges to $f\left(x_{0}\right)$ at that point. If f has a jump discontinuity at the point x_{0} in $(-p, p)$, then the series converges in the mean to the average value

$$
\frac{1}{2}\left(\lim _{x \rightarrow x_{0}^{-}} f(x)+\lim _{x \rightarrow x_{0}^{+}} f(x)\right)
$$

at that point.

In addition, the series extends the function $f(x)$ to be $2 p$-periodic.

Find the Fourier Series for $f(x)=x,-1<x<1$
Hen $p=1$

$$
\begin{aligned}
a_{0} & =\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}=0 \\
a_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n \pi x}{1}\right) d x=\int_{-1}^{1} x \cos (n \pi x) d x \\
& =\left.\frac{x}{n \pi} \operatorname{sir}(n \pi x)\right|_{-1} ^{1}-\frac{1}{n \pi} \int_{-1}^{1} \sin (n \pi x) d x \quad \quad \text { By } \rho a+s \\
& =\frac{1}{n \pi} \sin (n \pi)-\frac{-1}{n \pi} \sin (-n \pi)+\left.\frac{1}{(n \pi)^{2}} \cos (n \pi x)\right|_{-1} ^{1} \quad d n=x \quad v=\frac{1}{n \pi} \sin (n \pi x)
\end{aligned}
$$

$$
\begin{aligned}
&= \frac{1}{(n \pi)^{2}}[\cos (n \pi)-\cos (-n \pi)]=0 \\
& b_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \sin \left(\frac{n \pi x}{1}\right) d x=\int_{-1}^{1} x \sin (n \pi x) d x \\
&=\left.\frac{-x}{n \pi} \cos (n \pi x)\right|_{-1} ^{1}+\frac{1}{n \pi} \int_{-1}^{1} \cos (n \pi x) d x \quad \begin{array}{l}
\text { By pants }
\end{array} \\
&=\frac{-1}{n \pi} \cos (n \pi)-\frac{-(-1)}{n \pi} \cos (-n \pi)+\left.\frac{1}{(n \pi)^{2}} \sin (n \pi x)\right|_{-1} ^{1} \quad v=\frac{-1}{n \pi} \cos (n \pi x) \\
&=\frac{-2}{n \pi}(-1)^{n}+\frac{1}{(n \pi)^{2}}\left(\sin (n \pi)-\sin ^{\prime \prime}(-n \pi)\right)
\end{aligned}
$$

$$
\begin{gathered}
b_{n}=\frac{2}{n \pi}(-1)^{n+1} \text { recall } a_{0}=0 \quad a_{n}=0 \quad n=1,2, \ldots \\
f(x)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi x)
\end{gathered}
$$

Figure: Plot of $f(x)=x$ for $-1<x<1$

Figure: Plot of $f(x)=x$ for $-1<x<1$ with two terms of the Fourier series.

Figure: Plot of $f(x)=x$ for $-1<x<1$ with 10 terms of the Fourier series

Figure: Plot of $f(x)=x$ for $-1<x<1$ with the Fourier series plotted on $(-3,3)$

Symmetry

Suppose f is defined on an interval containing x and $-x$.
If $f(-x)=f(x)$ for all x, then f is said to be even.
If $f(-x)=-f(x)$ for all x, then f is said to be odd.
For example, $f(x)=x^{n}$ is even if n is even and is odd if n is odd. The trigonometric function $g(x)=\cos x$ is even, and $h(x)=\sin x$ is odd.

Integrals on symmetric intervals

If f is an even function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=2 \int_{0}^{p} f(x) d x
$$

If f is an odd function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=0
$$

Products of Even and Odd functions

$$
\text { Even } \times \text { Even }=\text { Even, }
$$

and
Odd \times Odd $=$ Even.
While
Even \times Odd $=$ Odd.

So, suppose f is even on $(-p, p)$. This tells us that $f(x) \cos (n x)$ is even for all n and $f(x) \sin (n x)$ is odd for all n.

And, if f is odd on $(-p, p)$. This tells us that $f(x) \sin (n x)$ is even for all n and $f(x) \cos (n x)$ is odd for all n

Fourier Series of an Even Function

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Fourier series of f

$$
f(x)=\left\{\begin{array}{l}
x+\pi, \quad-\pi<x<0 \\
\pi-x, \quad 0 \leq x<\pi
\end{array}\right.
$$

We can check for symmetry.

Plot of f

Well finish next time.
fir even

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x) \\
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x
\end{aligned}
$$

