November 20 Math 2306 sec 51 Fall 2015

Section 11.3: Fourier Cosine and Sine Series

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function, or as an odd function. Then we can express f with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Half Range Sine Series of f

$$
\begin{array}{rl}
f(x)=2-x, \quad 0<x<2 \quad \text { hen } p=2 \\
b_{n} & =\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x \quad \text { By pants } \\
& =\left.\frac{-2}{n \pi}(2-x) \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}-\frac{2}{n \pi} \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x \quad d v=\sin \left(\frac{n \pi x}{2}\right) d x \\
0 & v=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}
$$

$$
=\frac{-2}{n \pi}[(2-2) \cos (n \pi)-2 \cos 0]=\frac{4}{n \pi}
$$

The half range sine series is

$$
f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Find the Half Range Cosine Series of f

$$
f(x)=2-x, \quad 0<x<2
$$

$$
\begin{aligned}
& a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=4-\frac{4}{2}=2 \\
& a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\left.\frac{2}{n \pi}(2-x) \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}+\frac{2}{n \pi} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x \quad \begin{aligned}
u & =2-x \quad d u=-d x \\
\quad d v & =\cos \left(\frac{n \pi x}{2}\right) d x \\
\quad v & =\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-4}{n^{2} \pi^{2}}[\cos (n \pi)-\cos 0] \\
& =\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

The half range cosine shies is

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

