## November 20 Math 2306 sec 54 Fall 2015

## Section 11.3: Fourier Cosine and Sine Series

If $f$ is even on $(-p, p)$, then the Fourier series of $f$ has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

## Fourier Series of an Odd Function

If $f$ is odd on $(-p, p)$, then the Fourier series of $f$ has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

## Find the Fourier series of $f$

$$
f(x)= \begin{cases}x+\pi, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{cases}
$$

We graphed $f$ and determined that it is even. So the series will only contain constant and cosine terms

$$
\begin{gathered}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x) \text { with } \\
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \text { and } a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x
\end{gathered}
$$

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) d x=\frac{2}{\pi}\left[\pi x-\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}\right. \\
& =\frac{2}{\pi}\left[\pi^{2}-\frac{\pi^{2}}{2}\right]=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}\right)=\pi \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) d x \\
& =\frac{2}{\pi}\left[\left.\frac{\pi-x}{n} \sin (n x)\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x \quad u=\pi-x \quad d n=-d x\right. \\
0 & \quad d v=\cos (n x) d x \\
& v=\frac{1}{n} \sin (n x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\pi}\left[\left.\frac{-1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}=\frac{-2}{n^{2} \pi}[\cos (n \pi)-\cos 0]\right. \\
& =\frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right)
\end{aligned}
$$

The Forrier Senies is

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right) \cos (n x)
$$

## Half Range Sine and Half Range Cosine Series

Suppose $f$ is only defined for $0<x<p$. We can extend $f$ to the left, to the interval $(-p, 0)$, as either an even function, or as an odd function. Then we can express $f$ with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

## Extending a Function to be Odd



Graph of Odd Extension of $f(x)$


Figure: $f(x)=p-x, 0<x<p$ together with its odd extension.

## Extending a Function to be Even



Graph of Even Extension of $f(x)$


Figure: $f(x)=p-x, 0<x<p$ together with its even extension.

Find the Half Range Sine Series of $f$

$$
\begin{array}{rlc}
f(x)=2-x, & 0<x<2 & p=2 \\
b_{n} & =\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x & \\
& =\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x & u=2-x, d u=-d x \\
& =\left.\frac{-2(2-x)}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}-\frac{2}{n \pi} \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x & v=-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right) d x
\end{array}
$$

$$
\begin{aligned}
& =\frac{-2 \cdot 0}{n \pi} \cos (n \pi)-\frac{-2 \cdot 2}{n \pi} \cos (0)-\left.\frac{2^{2}}{n^{2} \pi^{2}} \sin \left(\frac{n \pi / x}{2}\right)\right|_{0} ^{2} \\
& =\frac{4}{n \pi}
\end{aligned}
$$

The half range Sine Series is

$$
f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Find the Half Range Cosine Series of $f$

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2 \\
& a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=4-\frac{4}{2}=2 \\
& a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x \quad u=2-x \quad d u=-d x \\
&=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x \\
&=\left.\frac{2(2-x)}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}+\frac{2}{n \pi} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x
\end{aligned}
$$

November 18, $2015 \quad 18 / 42$

$$
\begin{aligned}
& =\left.\frac{-2^{2}}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-4}{n^{2} \pi^{2}}[\cos (n \pi)-\cos 0]=\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

The haef ronge cosine Series is

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

## Plots of $f$ with Half range series



Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

## Plots of $f$ with Half range series



Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

## Plots of $f$ with Half range series



Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

## Plots of $f$ with Half range series



Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

## Half Range Series

For the given function, plot the graph of the function along with three full periods on the interval $(-3 p, 3 p)$ of (a) the half range cosine series and (b) the half range sine series.

$$
f(x)= \begin{cases}x, & 0 \leq x<\frac{3}{2} \\ 3-x, & \frac{3}{2} \leq x<3\end{cases}
$$



Figure: Plot of $f$ alone.

## (a) Even Extension



Figure: Half range cosine series

## (b) Odd Extension



Figure: Half range sine series.

