November 26 MATH 1113 sec. 51 Fall 2018
Section 7.2: Double \& Half Angle IDs
Use $\sin (u+v)=\sin u \cos v+\sin v \cos u$ to obtain a formula for

$$
\begin{aligned}
\sin (2 u) & 2 u=u+u \\
\sin (2 u) & =\sin (u+u) \\
& =\sin u \cos u+\sin u \cos u \\
& =2 \sin u \cos u
\end{aligned}
$$

Double Angle Formulas for the Cosine
Use $\cos (u+v)=\cos u \cos v-\sin u \sin v$ and $\cos ^{2} u+\sin ^{2} u=1$ to find three formulas for

$$
\begin{aligned}
\cos (2 u): \cos (u+u) & =\cos u \cos u-\sin u \sin u \\
& =\cos ^{2} u-\sin ^{2} u
\end{aligned}
$$

Since $\sin ^{2} u=1-\cos ^{2} u$

$$
\begin{aligned}
\cos (2 u) & =\cos ^{2} u-\left(1-\cos ^{2} u\right) \\
& =2 \cos ^{2} u-1
\end{aligned}
$$

$$
\begin{aligned}
\sin u & \cos ^{2} u=1-\sin ^{2} u \\
\cos (2 u) & =1-\sin ^{2} u-\sin ^{2} u \\
& =1-2 \sin ^{2} u
\end{aligned}
$$

Question: Double Angle Formulas for the Tangent

From the sum formula $\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v}$, it follows that $\tan (2 u)=$
(a) $\frac{2 \tan u}{1-2 \tan u}$
(b) $\frac{2 \tan u}{1-\tan ^{2} u}$
(c) $\frac{\tan ^{2} u}{1-2 \tan u}$
(d) $\frac{\tan ^{2} u}{1-\tan ^{2} u}$

Double Angle Formulas

$$
\sin (2 u)=2 \sin u \cos u
$$

$$
\begin{aligned}
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u
\end{aligned}
$$

$$
\tan (2 u)=\frac{2 \tan u}{1-\tan ^{2} u}
$$

Example
Suppose $\csc (x)=5$ and $\cot (x)<0$. Find the exact value of
(a) $\tan (2 x)=\frac{2 \tan x}{1-\tan ^{2} x}$

$$
\csc (x)>0 \quad \cot (x)<0
$$

x-has theine side in quod II
(b) $\sec (2 x)$

$$
\text { a) } \begin{aligned}
\tan (2 x) & =\frac{2\left(\frac{-1}{\sqrt{24}}\right)}{1-\left(\frac{-1}{\sqrt{24}}\right)^{2}} \\
& =\frac{\frac{-2}{\sqrt{24}}}{1-\frac{1}{24}}\left(\frac{24}{24}\right)
\end{aligned}
$$

$$
=\frac{-2 \sqrt{24}}{24-1}=\frac{-2 \sqrt{24}}{23}
$$

b) $\operatorname{Sec}(2 x) \quad$ Fron $\operatorname{Csc} x=5, \quad \sin x=\frac{1}{5}$

So

So

$$
\sec (2 x)=\frac{25}{23}
$$

$$
\begin{aligned}
\cos (2 x) & =1-2 \sin ^{2} x \\
& =1-2\left(\frac{1}{5}\right)^{2}=1-\frac{2}{25} \\
& =\frac{25-2}{25}=\frac{23}{25}
\end{aligned}
$$

Half Angle IDs
Use the fact that $\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ and that $\frac{\pi}{4}=2 \frac{\pi}{8}$ to find the exact value of

$$
\begin{aligned}
& \sin ^{2}\left(\frac{\pi}{8}\right)=\frac{\sqrt{2}-1}{2 \sqrt{2}} \\
& \cos \left(\frac{\pi}{4}\right)=\cos \left(2 \frac{\pi}{8}\right)=1-2 \sin ^{2}\left(\frac{\pi}{8}\right) \\
& 2 \sin ^{2}\left(\frac{\pi}{8}\right)=1-\cos \left(\frac{\pi}{4}\right) \\
& \sin ^{2}\left(\frac{\pi}{8}\right)
\end{aligned}=\frac{1-\cos \left(\frac{\pi}{4}\right)}{2} .
$$

Half Angle IDs

$$
\begin{aligned}
& \sin ^{2} x=\frac{1-\cos (2 x)}{2} \quad \sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos x}{2}} \\
& \cos ^{2} x=\frac{1+\cos (2 x)}{2} \\
& \cos \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1+\cos x}{2}} \\
& \tan ^{2} x=\frac{1-\cos (2 x)}{1+\cos (2 x)} \\
& \tan \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos (x)}{1+\cos (x)}}
\end{aligned}
$$

For a given value of x, only one of the signs + or - will apply. To choose the correct sign, determine which quadrant the angle $\frac{x}{2}$ is in when in standard position.

Determine the exact value of
(a)

$$
\begin{array}{rlr}
\cos \left(22.5^{\circ}\right) & = \pm \sqrt{\frac{1+\cos \left(2 \cdot 22.5^{\circ}\right)}{2}} & 2\left(22.5^{\circ}\right)=45^{\circ} \\
\cos \left(22.5^{\circ}\right) & =\sqrt{\frac{1+\cos \left(45^{\circ}\right)}{2}} & 0^{\circ}<22.5^{\circ}<90^{\circ}
\end{array} \quad \begin{array}{ll}
& \\
& =\sqrt{\frac{1+\frac{1}{\sqrt{2}}}{2} \cdot\left(\frac{\sqrt{2}}{\sqrt{2}}\right)} \\
& =\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}
\end{array}
$$

Question

In standard position, the angle $\frac{13 \pi}{12}$ would have its terminal side in
(a) Quadrant 1
(b) Quadrant 2

$$
\frac{13 \pi}{12}=\pi+\frac{\pi}{12}
$$

(c) Quadrant 3
(d) Quadrant 4
(e) $\frac{13 \pi}{12}$ isn't a number, Dr. Ritter made it up

Question

The angle $\frac{13 \pi}{6}$ is coterminal with

$$
\frac{13 \pi}{6}=2 \pi+\frac{\pi}{6}
$$

(b) $\frac{5 \pi}{6}$
(c) $\frac{7 \pi}{6}$
(d) $\frac{11 \pi}{6}$
(e) $\frac{13 \pi}{6}$ isn't a number, Dr. Ritter made it up

Question

$$
\sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos (x)}{2}}
$$

The exact value of $\sin \left(\frac{13 \pi}{12}\right)=-\sqrt{\frac{1-\cos \left(\frac{13 \pi}{6}\right)}{2}}$
(a) $\frac{1}{4}$
(b) $-\frac{\sqrt{3}}{4}$
(c) $-\frac{\sqrt{2-\sqrt{3}}}{2}$

$$
=-\sqrt{\frac{1-\cos \left(\frac{\pi}{6}\right)}{2}}
$$

$$
=-\sqrt{\frac{1-\sqrt{3} / 2}{2}}
$$

(d) $\frac{\sqrt{2-\sqrt{3}}}{2}$

$$
=-\sqrt{\frac{2-\sqrt{3}}{4}}=-\frac{\sqrt{2-\sqrt{3}}}{2}
$$

Find the exact value
(c) $\tan \left(\frac{\theta}{2}\right)$ given $\cos \theta=\frac{4}{5}$ and $\frac{3 \pi}{2}<\theta<2 \pi$

$$
\begin{aligned}
& \text { From } \begin{aligned}
\frac{3 \pi}{2}<\theta & <2 \pi \\
\frac{1}{2}\left(\frac{3 \pi}{2}\right)<\frac{1}{2} \theta & <\frac{1}{2}(2 \pi) \\
\frac{3 \pi}{4} & <\frac{\theta}{2}<\pi \\
\tan \frac{\theta}{2}=-\sqrt{\frac{1-\cos \theta}{1+\cos \theta}} & =-\sqrt{\frac{1-4 / 5}{1+4 / 5}\left(\frac{5}{5}\right)} \\
& =-\sqrt{\frac{5-4}{5+4}}=-\sqrt{\frac{1}{9}}=-\frac{1}{3}
\end{aligned}
\end{aligned}
$$

Section 7．3：Verifying Identities
Let me verify the identity

$$
\csc (x)-\sin (x)=\cos (x) \cot (x)
$$

well work with the left side applying known identities to show it＇s equal to the right side．

$$
\begin{aligned}
\csc x-\sin x & =\frac{1}{\sin x}-\sin x & \text { reciprocal ID } \\
& =\frac{1}{\sin x}-\frac{\sin ^{2} x}{\sin x} & \text { algebra } \\
& =\frac{1-\sin ^{2} x}{\sin x} & \text { II }
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{\cos ^{2} x}{\sin x} & \text { Pythagorean ID } \\
=\cos x \frac{\cos x}{\sin x} & \text { algebra } \\
=\cos x \cot x & \text { quotient iD }
\end{array}
$$

Identity verified as expected.

Verifying Identities

Some things to note:

- Verifying an identity is NOT solving an equation.
- We do not "do the same thing" to both sides.
- We do not assume the statement is true. We SHOW it!
- Pick one side, and apply identities to it. The goal is to transform it to the other side.
- Usually try to work with the most complicated side. (It's usually easier to simplify a complicated expression than to complicate a simpler one!)
- Sometimes it helps to write everything in terms of sines and cosines-not always, but often.

Verify $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$
Starting with the left side

$$
\begin{aligned}
\frac{\sin x}{1-\cos x} & =\left(\frac{\sin x}{1-\cos x}\right)\left(\frac{1+\cos x}{1+\cos x}\right) \\
& =\frac{\sin x(1+\cos x)}{1-\cos ^{2} x} \\
& =\frac{\sin x(1+\cos x)}{\sin ^{2} x}
\end{aligned}
$$

we con get $1-\cos ^{2} x$ in the denominator

Pythagorean ID

$$
\begin{aligned}
& =\frac{\sin x(1+\cos x)}{\sin x \sin x} \\
& =\frac{1+\cos x}{\sin x}
\end{aligned}
$$

as exprcted
Concal comnon factur

Verify $\frac{\cos \theta \cot \theta}{1-\sin \theta}-1=\csc \theta$

$$
\begin{aligned}
\frac{\cos \theta \cot \theta}{1-\sin \theta}-1 & =\frac{\cos \theta \cot \theta}{1-\sin \theta}\left(\frac{1+\sin \theta}{1+\sin \theta}\right)-\frac{1-\sin ^{2} \theta}{1-\sin ^{2} \theta} \\
& =\frac{\cos \theta \cot \theta(1+\sin \theta)-\left(1-\sin ^{2} \theta\right)}{1-\sin ^{2} \theta} \\
& =\frac{\cos \theta \frac{\cos \theta}{\sin \theta(1+\sin \theta)-1+\sin ^{2} \theta}}{\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta\left(\frac{1}{\sin \theta}+1\right)-\cos ^{2} \theta}{\cos ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\cos ^{2} \theta\left(\frac{1}{\sin \theta}+1-1\right)}{\cos ^{2} \theta} \\
& =\frac{1}{\sin \theta}+1-1 \\
& =\frac{1}{\sin \theta} \\
& =\csc \theta \text { as expot }
\end{aligned}
$$

