November 28 MATH 1113 sec. 51 Fall 2018

Section 7.3: Verifying Identities

Verify the identity
$$\sec 2\theta = \frac{\sec^2 \theta}{2 - \sec^2 \theta}$$

From the right
$$\frac{Sec^20}{2 - Sec^20} = \frac{\frac{1}{\cos^20}}{2 - \frac{1}{\cos^20}}$$

$$= \frac{\frac{1}{\cos^20}}{\frac{2\cos^20}{\cos^20} - \frac{1}{\cos^20}}$$
Algebra

$$= \frac{\cos^2 \theta}{2 \cos^2 \theta - 1}$$

$$= \frac{\cos^2 \theta}{\cos^2 \theta}$$

$$= \frac{1}{\cos^2 \theta} \cdot \left(\frac{\cos^2 \theta}{2 \cos^2 \theta - 1} \right) \quad \text{algebra}$$

as expected

2/24

Section 7.5: Trigonometric Equations

In this section, we wish to consider **conditional** equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include

$$2\cos(x)-1=0, \qquad \sin\theta\cos\theta+\sin\theta=0, \qquad 2\tan^2x-\tan x-1=0,$$

$$\csc 2\theta = \sec 2\theta$$
, $\tan^2(3x) = 3$, and so forth.

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

A Couple of Simple Examples

Find all possible solutions of the equation $2\cos(x) - 1 = 0$.

Let's try to find solutions in the interval [0,277).

$$Cos(x) = 1$$
 $Cos(x) = \frac{1}{2}$ one solution is $\frac{\pi}{3}$ (from memory)

For any x having $\frac{11}{3}$ as a reference angle

we found two basic solutions $\frac{T}{3} \text{ and } \frac{ST}{3}.$

To capture the solutions due to puriodicity, the solutions can be listed as

$$\chi = \frac{\pi}{3} + 2\pi n$$
 or

$$x = \frac{ST}{3} + 2TN$$
 where n is any integer.

Graphical Representation

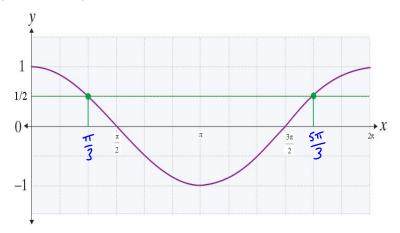


Figure: The solutions of $2\cos(x) - 1 = 0$ correspond to intersections of the curves $y = \cos x$ and $y = \frac{1}{2}$. Intersections continue to the left and right every 2π units.

Another Simple Example

Find all possible solutions of the equation sin(x) = cos(x).

If
$$Cosx = 0$$
 then $Sinx = 1$ or $Sinx = 1$.
So $Cosx$ cont be zero.
 $Sinx = Gosx$ $\Rightarrow \frac{Sinx}{Gosx} = 1$
 $tonx = 1$ one solution is $\frac{T}{Y}$
another is $\frac{ST}{Y}$

All solutions are given by

$$x = \frac{s\pi}{4} + 2\pi n$$
 for integers n .

Graphical Representation

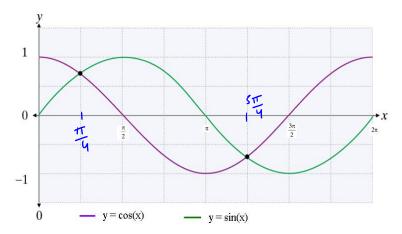


Figure: The solutions of $\sin(x) = \cos(x)$ correspond to intersections of the curves $y = \cos x$ and $y = \sin(x)$. Intersections continue to the left and right every 2π units.

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of **one or more** equations that look like

One Trig Function = One Number

We typically determine solution(s) in one period, and then extend those solutions if required.

Example

Find all possible solutions of the equation $1 + \cos \theta = 2 \sin^2 \theta$.

It's best to get all in terms of sine or cosine.

Use
$$5n^2\theta = 1 - 6s^2\theta$$
 $1 + 6s^2\theta = 25in^2\theta$
 $1 + 6s^2\theta = 2 - 26s^2\theta$
 $26s^2\theta + 6s^2\theta - 1 = 0$

Looks like $2u^2 + u - 1 = 0$
 $(26s^2\theta - 1)(6s^2\theta + 1) = 0$
 $(2n-1)(n+1)$

Looks like
$$2u^2 + u - 1 = 0$$
 $(2u - 1)(u + 1) = 0$

Using the zero product property

26050-1=0 or Cos0+1=0

 $\cos \theta = \frac{1}{2}$ $\cos \theta = -1$

One solution is

0= \frac{7}{3} + 2\pi n

Q= ST + 2mn
All solutions are

0: T+2Th for

from earlier integers n.

The solution set is

$$\theta = \frac{\pi}{3} + 2n\pi$$
 or $\theta = \frac{5\pi}{3} + 2\pi n$ or