November 28 MATH 1113 sec. 52 Fall 2018

Section 7.3: Verifying Identities

 $\sec 2\theta = \frac{\sec^2 \theta}{2 - \sec^2 \theta}$ Verify the identity From the right Cos20 Sec 0 2- Sec 20 M reciprocel 2 Cos20 Cas²O z alsebra 2 Cos20

November 26, 2018

1/24

650 26520-1

÷.

algebra

 $= \frac{1}{C_{0}s^{2}\Theta} \cdot \left(\frac{C_{0}s^{2}\Theta}{2(s^{2}\Theta-1)}\right)$ algebre

algebra

Double age 1D

as expected.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

November 26, 2018

2/24

= Sec 20

_____ Cos 20

Section 7.5: Trigonometric Equations

In this section, we wish to consider **conditional** equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include

 $2\cos(x)-1=0,$ $\sin\theta\cos\theta+\sin\theta=0,$ $2\tan^2 x-\tan x-1=0,$

 $\csc 2\theta = \sec 2\theta$, $\tan^2(3x) = 3$, and so forth.

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

A Couple of Simple Examples

Find all possible solutions of the equation $2\cos(x) - 1 = 0$.

We'll look for solution on the interval $[0,2\pi)$ then extend that.

$$2\cos x - 1 = 0$$

 $2\cos x = 1$ $\cos x = \frac{1}{2}$ one solution is $\frac{\pi}{3}$ (from memory)

For any X having
$$\frac{1}{3}$$
 as its reference angle
Cosx = $\frac{1}{2}$ or $\omega sx = \frac{1}{2}$
Cosx > 0 in guod IV

Another solution is STT. Due to periodicity we can add any integer multiple of 211 to get other solutions. The solution set can be expressed as Q= STT + 2TT for integers n

November 26, 2018 6 / 24

イロト イ団ト イヨト イヨト 二日

Graphical Representation

Figure: The solutions of $2\cos(x) - 1 = 0$ correspond to intersections of the curves $y = \cos x$ and $y = \frac{1}{2}$. Intersections continue to the left and right every 2π units.

Another Simple Example

Find all possible solutions of the equation sin(x) = cos(x).

If
$$Cos \times = 0$$
, then $Sin \times = 1$ or $Sin \times = -1$. So
 $Cor \times \neq 0$ for any solutions:
 $Divide by Cos \times$
 $\frac{Sin \times}{Cos \times} = 1 \Rightarrow tan \times = 1$
 $One Solution is \frac{TT}{4}$
The period of tangent is TT

<ロト <回 > < 回 > < 回 > < 回 > … 回

Graphical Representation

Figure: The solutions of sin(x) = cos(x) correspond to intersections of the curves y = cos x and y = sin(x). Intersections continue to the left and right every 2π units.

< ロ > < 同 > < 回 > < 回 >

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of **one or more** equations that look like

One Trig Function = One Number

We typically determine solution(s) in one period, and then extend those solutions if required.