November 28 MATH 1113 sec. 52 Fall 2018

Section 7.3: Verifying Identities
Verify the identity $\sec 2 \theta=\frac{\sec ^{2} \theta}{2-\sec ^{2} \theta}$
From the right

$$
\begin{aligned}
\frac{\sec ^{2} \theta}{2-\sec ^{2} \theta} & =\frac{\frac{1}{\cos ^{2} \theta}}{2-\frac{1}{\cos ^{2} \theta}} \quad \text { reciprocel ID } \\
& =\frac{\frac{1}{\cos ^{2} \theta}}{\frac{2 \cos ^{2} \theta}{\cos ^{2} \theta}-\frac{1}{\cos ^{2} \theta}} \quad \text { algebra }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{\cos ^{2} \theta}}{\frac{2 \cos ^{2} \theta-1}{\cos ^{2} \theta}} \quad \text { algebra } \\
& =\frac{1}{\cos ^{2} \theta} \cdot\left(\frac{\cos ^{2} \theta}{2 \cos ^{2} \theta-1}\right) \text { algebre } \\
& =\frac{1}{2 \cos ^{2} \theta-1} \quad \text { algebra } \\
& =\frac{1}{\cos ^{2} \theta} \quad \text { Doubh angh ID } \\
& =\sec 2 \theta
\end{aligned} \quad \text { as expected. } \quad l l
$$

Section 7.5: Trigonometric Equations

In this section, we wish to consider conditional equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include
$2 \cos (x)-1=0, \quad \sin \theta \cos \theta+\sin \theta=0, \quad 2 \tan ^{2} x-\tan x-1=0$,

$$
\csc 2 \theta=\sec 2 \theta, \quad \tan ^{2}(3 x)=3, \quad \text { and so forth. }
$$

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

A Couple of Simple Examples
Find all possible solutions of the equation $2 \cos (x)-1=0$.
well look fore solutions on the intended $[0,2 \pi)$ then extend that.

$$
\begin{aligned}
2 \cos x-1 & =0 \\
2 \cos x & =1 \\
\cos x & =\frac{1}{2} \quad \text { one solution is } \frac{\pi}{3} \quad \text { (from memory) }
\end{aligned}
$$

For any x having $\frac{\pi}{3}$ as its reference angl

$$
\cos x=\frac{1}{2} \text { or } \cos x=\frac{-1}{2}
$$

$\operatorname{Cos} x>0$ in quad IV

Another solution is $\frac{5 \pi}{3}$.

Due to periodicity we con add any integer multiple of 2π to set other solutions.

The solution set can be expressed as

$$
\begin{aligned}
& \theta=\frac{\pi}{3}+2 \pi n \text { or } \\
& \theta=\frac{5 \pi}{3}+2 \pi n \text { for integers } n
\end{aligned}
$$

Graphical Representation

Figure: The solutions of $2 \cos (x)-1=0$ correspond to intersections of the curves $y=\cos x$ and $y=\frac{1}{2}$. Intersections continue to the left and right every 2π units.

Another Simple Example
Find all possible solutions of the equation $\sin (x)=\cos (x)$.
If $\cos x=0$, then $\sin x=1$ or $\sin x=-1$. so $\cos x \neq 0$ for any solutions.

Divide. by $\cos x$

$$
\frac{\sin x}{\cos x}=1 \Rightarrow \tan x=1
$$

One solution is $\frac{\pi}{4}$

The period of tangent is π

So all solutions are given by

$$
x=\frac{\pi}{4}+\pi n \text { for integers } n
$$

Since tangent is positive in prod III

$$
\tan x=1 \text { if } x=\frac{5 \pi}{4}
$$

we could also state the solution set as

$$
\begin{aligned}
& x=\frac{\pi}{4}+2 \pi n \text { or } \\
& x=\frac{5 \pi}{4}+2 \pi n \text { for integers } n
\end{aligned}
$$

Graphical Representation

Figure: The solutions of $\sin (x)=\cos (x)$ correspond to intersections of the curves $y=\cos x$ and $y=\sin (x)$. Intersections continue to the left and right every 2π units.

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of one or more equations that look like

$$
\text { One Trig Function }=\text { One Number }
$$

We typically determine solution(s) in one period, and then extend those solutions if required.

