November 28 Math 2306 sec. 53 Fall 2018

Section 18: Sine and Cosine Series
Functions with Symmetry: If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function or as an odd function. Then we can express f with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Extending a Function to be Odd

Graph of Odd Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its odd extension.

Extending a Function to be Even

Graph of Even Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its even extension.

Find the Half Range Sine Series of f

$$
\begin{array}{rlr}
f(x)=2-x, \quad 0<x<2 & p=2 \\
f(x) & =\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right) & u=2-x \quad d u=-d x \\
b_{n} & =\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x & d v=\sin \left(\frac{n \pi x}{2}\right) d x \\
= & \quad \int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x & \\
& & =\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}
$$

$$
\begin{aligned}
& =\frac{-2(2-x)}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\left.\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-2(2 \cdot 2)}{n \pi} \cos \left(\frac{n \bar{n} 2}{2}\right)-\left(\frac{2}{n \pi}\right)^{2} \sin \left(\frac{n \pi 2}{2}\right) \\
& 0_{0}^{\prime \prime} \\
& \left.=-\frac{(-2(2-0)}{n \pi} \cos (0)-\left(\frac{2}{n \pi}\right)^{2} \sin (0)\right) \\
& n \pi
\end{aligned}
$$

$$
b_{n}=\frac{4}{n \pi}
$$

The half range sine shies is

$$
f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Find the Half Range Cosine Series of f

$$
\begin{gathered}
f(x)=2-x, \quad 0<x<2 \\
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right) \\
a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=4-2-0=2 \\
a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x
\end{gathered}
$$

$$
=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x
$$

again integrate by parts

$$
\begin{aligned}
& =\frac{2(2-x)}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{2(2-2)}{n \pi} \sin \left(\frac{n \pi z}{2}\right)-\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi 2}{2}\right)- \\
& 0^{\prime \prime} \\
& \left(\frac{2(2-0)}{n \pi} \sin _{0}^{\prime \prime}(0)-\left(\frac{2}{n \pi}\right)^{2} \cos (0)\right) \\
& 0^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\frac{2}{n \pi}\right)^{2} \cos (n \pi)+\left(\frac{2}{n \pi}\right)^{2} \\
& =\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

The series is

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)
$$

Example Continued...

We have two different half range series:

$$
\text { Half range sine: } \quad f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Half range cosine: $f(x)=1+\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)$.
We have two different series representations for this function each of which converge to $f(x)$ on the interval $(0,2)$. The following plots show graphs of f along with partial sums of each of the series. When we plot over the interval $(-2,2)$ we see the two different symmetries. Plotting over a larger interval such as $(-6,6)$ we can see the periodic extensions of the two symmetries.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

