November 28 Math 3260 sec. 57 Fall 2017 Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{vmatrix} 3 & 0 \\ 0 & -4 \end{vmatrix}$.

$$D^{2} = DD = \begin{bmatrix} 3 & 0 \\ 0 & -y \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -y \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix}$$
$$D^{3} = D^{2}D = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 - 4 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ 0 - 64 \end{bmatrix}$$
The eigenvalues of D^{2} are $\lambda_{1} = 27$, $\lambda_{2} = -64$

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If *D* is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer *k*. Moreover, the eigenvalues of *D* are the diagonal entries.

A D N A B N A B N A B N

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^k and B^k are similar with the same matrix P.

R= P'AP for some Ris similar to Aif nonsingula matrix P. Let's see that B2 is similar to A2. $B^{1} = BB = (P^{1}AP)(P^{1}AP)$ = P'A (PP')AP = P'AIAP $= p' A^2 P$

Supporing B" = p'A"P for since h >1 Then $B^{krl} = B^k B = (P^l A^k P)(P^l A P)$ = p' A' I AP = p" A "+ P = P' Aht P.

Diagonalizability

Definition: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
$$dx(A - \lambda \Box) = \begin{vmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 & -3 \\ 3 & -5 - \lambda & -3 \\ -3 & -3 & -3 \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -3 - \lambda & -3 \\ -3 & -3 \\ -3 & -\lambda \end{vmatrix}$$
$$+ \begin{vmatrix} -3 & -3 & -3 \\ -3 & -\lambda \\ -3 & -\lambda \end{vmatrix}$$
$$+ \begin{vmatrix} -3 & -3 & -3 \\ -3 & -\lambda \\ -3 & -\lambda \end{vmatrix}$$
$$+ \begin{vmatrix} -3 & -3 & -3 \\ -3 & -\lambda \\ -3 & -\lambda \end{vmatrix}$$
$$+ \begin{vmatrix} -3 & -3 & -3 \\ -3 & -\lambda \\ -3 & -\lambda \\ -3 & -\lambda \end{vmatrix}$$

◆□> ◆圖> ◆理> ◆理> 「理

$$= (1-\lambda) \left(\lambda^{2} + 4\lambda - 5 + 9 \right) - 3 \left(3\lambda + 6 \right) + 3 \left(3\lambda + 6 \right)$$

$$= (1-\lambda) \left(\lambda^{2} + 4\lambda + 4 \right) = (1-\lambda) (\lambda + 2^{1})^{2}$$

$$d\mathcal{A} \left(A - \lambda L \right) = 0 \qquad \Rightarrow \qquad \lambda = 1 \quad \text{or} \quad \lambda = -2$$

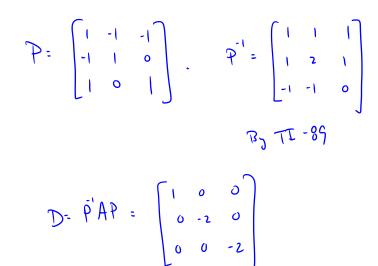
Find associated eigen vectors:

$$A - LT = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} \xrightarrow{rret} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1 = x_3} x_2 = -x_3$$

 $x_3 - bru$
 $\overrightarrow{x}_1 = x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

◆□> ◆圖> ◆理> ◆理> 三連

$$A - (-2)T = \begin{bmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{X_1 - X_2 - X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_3 - X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2 - X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2 - X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2 - X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_2 - X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_3} \xrightarrow{X_2, X_3} \xrightarrow{X_3} \xrightarrow$$



・ロト ・四ト ・ヨト ・ヨト November 15, 2017 10/46

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
$$det (A - \lambda I) = \begin{vmatrix} 2 - \lambda & 4 & 3 \\ -4 & -6 - \lambda & 3 \\ -4 & -6 - \lambda & 3 \\ -4 & -6 - \lambda & 3 \\ 3 & 3 & 1 - \lambda \end{vmatrix} = \\= (2 - \lambda) \left((-6 - \lambda)(1 - \lambda) + 9 \right) - 4 \left(-4(1 - \lambda) + 9 \right) + 3 \left((-6 - \lambda)(1 - \lambda) + 9 \right) + 3 \left((-12 - 3(-6 - \lambda)) \right)$$
$$= (2 - \lambda) \left(\lambda^{2} + 5 \lambda + 3 \right) - 4 \left(4 + 5 \right) + 3 \left(3 \lambda + 6 \right)$$

November 15, 2017 16 / 46

- = $(2-\lambda)$ $(\lambda^2 + 5\lambda + 3) 16\lambda 20 + 9\lambda + 18$
- = $2\lambda^2 + 10\lambda + 6 \lambda^3 5\lambda^2 3\lambda 7\lambda 2$

 $= -\lambda^{3} - 3\lambda^{2} + 4$ -1 - 3 + 4 = 0, 1 is a root.

=
$$(1-\lambda)(\lambda^2+4\lambda+4) = (1-\lambda)(\lambda+2)^2$$

There are 2 eigenvalues, $\lambda=1$ and $\lambda=2$.

November 15, 2017 17 / 46

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のなべ

Finding eigenvectors

$$A+zT = \begin{pmatrix} 4 & 4 & 3 \\ -4 & -4 & -3 \\ 3 & 3 & 3 \end{pmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} X_1 = -X_2 \\ X_2 = fnu \\ X_3 = 0 \end{array} \xrightarrow{\text{X}} = X_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$A - I = \begin{pmatrix} 1 & 4 & 3 \\ -4 & -7 & -3 \\ 3 & 3 & 0 \end{pmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{X_1 = X_3} X_2 = -X_3$$

November 15, 2017 18 / 46

・ロト・西ト・ヨト・ヨー つくぐ

November 15, 2017 19 / 46

・ロト・西ト・ヨト・ヨー うへの

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

> November 15, 2017

25/46

Theorem (a third on diagonalizability)

Theorem: Let *A* be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
- (c) If *A* is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)

Example

Diagonalize the matrix if possible. $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$. $dd (A - \lambda I) = \begin{bmatrix} 1 - \lambda & 3 \\ - \lambda & -3 \end{bmatrix} = (1 - \lambda)(2 - \lambda)(1 - 2 - \lambda)($

$$\lambda_{1} = S , \quad \lambda_{2} = -2$$

$$A - SI = \begin{bmatrix} -4 & 3 \\ 4 & -3 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & -3I_{4} \\ 0 & 0 \end{bmatrix} \quad \chi_{1} = \frac{3}{4} \chi_{2}$$

$$\overrightarrow{\chi}_{1} = \chi_{2} \begin{bmatrix} 3I_{4} \\ 1 \end{bmatrix} = \frac{1}{4} \chi_{2} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$A + 2I = \begin{bmatrix} 3 & 3 \\ 4 & 4 \end{bmatrix} \xrightarrow{r} ef \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{X_1 = -X_1} X_2 - free$$
$$\overrightarrow{X_2 = -X_2} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
$$P = \begin{bmatrix} 3 & -1 \\ 4 & 1 \end{bmatrix} D = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$$

November 15, 2017 28 / 46

・ロト・西ト・ヨト・ヨー つくぐ

Example Continued...
Find
$$A^4$$
 where $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$. We know that
 $D = \tilde{P} A P$ when $D = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$

Hence
$$\overrightarrow{D}' = \overrightarrow{P} \overrightarrow{A}' \overrightarrow{P}$$

 $\overrightarrow{D}' = \begin{bmatrix} 625 & 0 \\ 0 & 16 \end{bmatrix}$ so
 $\overrightarrow{A}' = \overrightarrow{P} \overrightarrow{D}' \overrightarrow{P}' = \begin{bmatrix} 3 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 625 & 0 \\ 0 & 16 \end{bmatrix} \frac{1}{7} \begin{bmatrix} 1 & 1 \\ -4 & 3 \end{bmatrix}$