November 28 Math 3260 sec. 58 Fall 2017
Section 5.3: Diagonalization
Determine the eigenvalues of the matrix $D^{3}$ where $D=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$.

$$
\begin{aligned}
& D^{2}=D D=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0-4
\end{array}\right]=\left[\begin{array}{cc}
9 & 0 \\
0 & 16
\end{array}\right] \\
& D^{3}=D^{2} D=\left[\begin{array}{cc}
9 & 0 \\
0 & 16
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]=\left[\begin{array}{cc}
27 & 0 \\
0 & -64
\end{array}\right]
\end{aligned}
$$

The eigenvalues of $D^{3}$ are $\lambda_{1}=27$ and $\lambda_{2}=-64$

## Diagonal Matrices

Recall: A matrix $D$ is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If $D$ is diagonal with diagonal entries $d_{i j}$, then $D^{k}$ is diagonal with diagonal entries $d_{i j}^{k}$ for positive integer $k$. Moreover, the eigenvalues of $D$ are the diagonal entries.

Powers and Similarity
Show that if $A$ and $B$ are similar, with similarity tranformation matrix $P$, then $A^{k}$ and $B^{k}$ are similar with the same matrix $P$.
$B$ is similar to $A$ if $B=P^{-1} A P$ for some nonsingula matrix $P$. Wi's se that $B^{2}$ is similento $A^{2}$.

$$
\begin{aligned}
B^{2}=B B & =\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A\left(P P^{-1}\right) A P=P^{-1} A I A P \\
& =P^{-1} A A P=P^{-1} A^{2} P
\end{aligned}
$$

Suppose $B^{k}=P^{-1} A^{k} P$ for some $k \geqslant 1$.

Then

$$
\begin{aligned}
B^{k+1}=B^{k} B & =\left(P^{-1} A^{k} P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A^{k} A P \\
& =P^{-1} A^{k+1} P
\end{aligned}
$$

## Diagonalizability

Defintion: An $n \times n$ matrix $A$ is called diagonalizable if it is similar to a diagonal matrix $D$. That is, provided there exists a nonsingular matrix $P$ such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem: The $n \times n$ matrix $A$ is diagonalizable if and only if $A$ has $n$ linearly independent eigenvectors. In this case, the matrix $P$ is the matrix whose columns are the $n$ linearly independent eigenvectors of $A$.

Example
Diagonalize the matrix $A$ if possible. $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{dtt}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
-5-\lambda & -3 \\
3 & 1-\lambda
\end{array}\right|-3\left|\begin{array}{cc}
-3 & -3 \\
3 & 1-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
-3 & -5-\lambda \\
3 & 3
\end{array}\right| \\
& =(1-\lambda)((-5-\lambda)(1-\lambda)+9)-3(-3(1-\lambda)+9)+3(-9-3(-5-\lambda))
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda)\left[\lambda^{2}+4 \lambda-5+9\right]-3(3 \lambda+6)+3(3 \lambda+6) \\
& =(1-\lambda)\left(\lambda^{2}+4 \lambda+4\right)=(1-\lambda)(\lambda+2)^{2} \\
& \operatorname{det}(A-\lambda I)=0 \text { if } \lambda=1 \text { or } \lambda=-2 \\
& A \cdot 1 I=\left[\begin{array}{ccc}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=x_{3} \\
x_{2}=-x_{3} \\
x_{3}-f_{\text {fue }}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\vec{x}=x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
A-(-2) I=\left[\begin{array}{ccc}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { aref }}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{c}
x_{1}=-x_{2}-x_{3} \\
x_{2}, x_{3} \\
\text { hue }
\end{array} \\
\vec{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

We have 3 lineerly indipendect eigenvector

$$
\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

$A$ motriy $P$ is

$$
\begin{aligned}
& \Phi=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] \\
& P^{-1}=\left[\begin{array}{ccc}
1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Example
Diagonalize the matrix $A$ if possible. $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)= & \left|\begin{array}{ccc}
2-\lambda & 4 & 3 \\
-4 & -6-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right| \\
= & (2-\lambda)((-6-\lambda)(1-\lambda)+9)-4(-4(1-\lambda)+9) \\
& +3(-12-3(-6-\lambda)) \\
= & (2-\lambda)\left(\lambda^{2}+5 \lambda+3\right)-4(4 \lambda+5)+3(3 \lambda+6)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \lambda^{2}+10 \lambda+6-\lambda^{3}-5 \lambda^{2}-3 \lambda-16 \lambda-20+9 \lambda+19 \\
& =-\lambda^{3}-3 \lambda^{2}+4 \\
& -1-3+4=0 \Rightarrow 1 \text { is a root } \\
& =(1-\lambda)\left(\lambda^{2}+4 \lambda+4\right)=(1-\lambda)(\lambda+2)^{2}
\end{aligned}
$$

The elgen values are $\lambda_{1}=1$ and $\lambda_{2}=-2$.

$$
A-1 I=\left[\begin{array}{ccc}
1 & 4 & 3 \\
-4 & -7 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=x_{3} \\
& x_{2}=-x_{3} \\
& x_{3}-\text { fur }
\end{aligned}
$$

$$
\begin{gathered}
\vec{x}=x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
A-(-2) I=\left[\begin{array}{rrr}
4 & 4 & 3 \\
-4 & -4 & -3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
\\
x_{1}=-x_{2} \\
x_{2}-\operatorname{fun}_{n} \\
x_{3}=0
\end{gathered}
$$

$$
x=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

There ame onlys two linearly indpendent eigen vectors.
$A$ is not diagonalizable.

Suppose we set up $A-\lambda I$

$$
\begin{gathered}
\text { and } \\
A-\lambda I \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\vec{x}=0
\end{gathered}
$$

## Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If $\lambda_{1}$ and $\lambda_{2}$ are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix $A$ has $n$ distinct eigenvalues, then $A$ is diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

## Theorem (a third on diagonalizability)

Theorem: Let $A$ be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) The geometric multiplicity (dimension of the eigenspace) of $\lambda_{k}$ is less than or equal to the algebraic multiplicity of $\lambda_{k}$.
(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is $n$-i.e. the sum of dimensions of all eigenspaces is $n$ so that there are $n$ linearly independent eigenvectors.
(c) If $A$ is diagonalizable, and $\mathcal{B}_{k}$ is a basis for the eigenspace for $\lambda_{k}$, then the collection (union) of bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ is a basis for $\mathbb{R}^{n}$.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis for $\mathbb{R}^{n}$. (Of course, one would need to reference the specific matrix. )

Example
Diagonalize the matrix if possible. $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 3 \\
4 & 2-\lambda
\end{array}\right| & =(1-\lambda)(2-\lambda)-12 \\
& =\lambda^{2}-3 \lambda+2-12 \\
& =\lambda^{2}-3 \lambda-10=(\lambda-5)(\lambda+2) \\
\lambda_{1} & =5, \lambda_{2}=-2
\end{aligned}
$$

Find eigen vectors

$$
\begin{aligned}
& \text { eisen vectors } \\
& A-S I=\left[\begin{array}{cc}
-4 & 3 \\
4 & -3
\end{array}\right] \stackrel{\text { ret }}{\rightarrow}\left[\begin{array}{cc}
1 & -\frac{3}{4} \\
0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1}=\frac{3}{4} x_{2} \\
x_{2} \text {-free }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\vec{x}=x_{2}\left[\begin{array}{l}
\frac{3}{4} \\
1
\end{array}\right]=\frac{x_{2}}{4}\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
A-(-2) I=\left[\begin{array}{ll}
3 & 3 \\
4 & 4
\end{array}\right] \underset{\rightarrow}{\text { reft }}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad \begin{array}{r}
x_{1}=-x_{2} \\
x_{2}-\text { frae }
\end{array} \\
\vec{x}=x_{2}\left[\begin{array}{l}
-1 \\
1
\end{array}\right] . \\
\text { For } P=\left[\begin{array}{ll}
3 & -1 \\
4 & 1
\end{array}\right] \quad D=\left[\begin{array}{ll}
5 & 0 \\
0 & -2
\end{array}\right]
\end{gathered}
$$

Example Continued...
Find $A^{4}$ where $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$.
we know that $D=P^{-1} A P$ where $D=\left[\begin{array}{cc}s & 0 \\ 0 & -2\end{array}\right], P=\left[\begin{array}{cc}3 & -1 \\ 4 & 1\end{array}\right]$

$$
\begin{aligned}
D^{4}:\left[\begin{array}{cc}
625 & 0 \\
0 & 16
\end{array}\right] \quad D^{4} & =P^{-1} A^{4} P \\
\Rightarrow A^{4} & =P D^{4} P^{-1} \\
& =\left[\begin{array}{cc}
277 & 261 \\
348 & 364
\end{array}\right]
\end{aligned}
$$

Suppose $A$ is an $n \times n$ matrix, cor we define $e^{A}$.

$$
e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\frac{1}{4!} A^{4}+\cdots \cdots
$$

This is just an example of where Computing lots of powers of a matrix may home application.

