November 28 Math 3260 sec. 58 Fall 2017

Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$.

$$D^{2} = DD = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix}$$

$$D^{3} = D^{2}D = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -41 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ 0 & -64 \end{bmatrix}$$
The eigenvalues of D^{3} are $\lambda = 27$ and $\lambda_{2} = -64$

Diagonal Matrices

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^k and B^k are similar with the same matrix P.

Thun
$$B^{k+1} = B^k B = (P^T A^k P)(P^T AP)$$

$$= P^T A^k A P$$

$$= P^T A^{k+1} P$$

Diagonalizability

Defintion: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$

$$dA(A-\lambda T) = \begin{vmatrix} 1-\lambda & 3 & 3 \\ -3 & -5-\lambda & -3 \\ 3 & 3 & 1-\lambda \end{vmatrix}$$

$$: (1-\lambda) \begin{vmatrix} -5-\lambda & -3 \\ 3 & 1-\lambda \end{vmatrix} - 3 \begin{vmatrix} -3 & -3 \\ 3 & 1-\lambda \end{vmatrix} + 3 \begin{vmatrix} -3 & -5-\lambda \\ 3 & 3 \end{vmatrix}$$

$$: (1-\lambda) \left((-5-\lambda)(1-\lambda) + \frac{1}{7} \right) - 3 \left(-3(1-\lambda) + 9 \right) + 3 \left(-9 - 3(-5-\lambda) \right)$$

$$= (1-\lambda) \left[\lambda^2 + 4\lambda - 5 + 9 \right] - 3 \left(3\lambda + 6 \right) + 3 \left(3\lambda + 6 \right)$$

$$= (1-\lambda) \left(\lambda^2 + 4\lambda + 4 \right) = (1-\lambda) \left(\lambda + 2 \right)^2$$

$$A - 1T = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{X_1 = X_3} X_2 - X_3$$

$$\chi = \chi^3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

We have 3 linearly independent eigenvectors

$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

A matrix P is

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
 $P^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$

November 15. 2017 10 / 46

Example

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$

16 / 46

$$= 2\lambda^{2} + (0\lambda + 6 - \lambda^{3} - 5\lambda^{2} - 3\lambda - 16\lambda - 20 + 9\lambda + 19$$

$$= -\lambda^3 - 3\lambda^2 + 4$$

$$-1 - 3 + 4 = 0 \Rightarrow 1 \text{ is a root}$$

The eigen value are 1,=1 and 12=-2.

$$A - II = \begin{bmatrix} 1 & 4 & 3 \\ -4 & -7 & -3 \\ 3 & 3 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 6 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{X_1 = X_3} X_2 = -X_3$$

November 15, 2017 17 / 46

$$\vec{\chi} = \chi_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$A - (-2) \boxed{ } = \begin{bmatrix} 4 & 4 & 3 \\ -4 & -4 & -3 \\ 3 & 3 & 3 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$X_1 = -X_2$$
 $X_2 = 0$

$$\chi = \chi_{L} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

There are only two direarly independent eigen vectors.

A is not diagonalizable.

$$A-\lambda I \xrightarrow{\text{cust}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
- (c) If A is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)

Example

Diagonalize the matrix if possible. $A = \begin{bmatrix} 1 & 3 \\ A & 2 \end{bmatrix}$.

$$\det (A-\lambda I) = \begin{vmatrix} 1-\lambda & 3 \\ 4 & 2-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda)-12$$

$$= \lambda^2-3\lambda+2-12$$

$$= \lambda^2-3\lambda-10 = (\lambda-5)(\lambda+2)$$

$$\lambda = 5$$
, $\lambda_1 = -2$

$$A - SI = \begin{bmatrix} -4 & 3 \\ 4 & -3 \end{bmatrix} \xrightarrow{\text{res}^4}$$

eigenvectors
$$A - SI = \begin{bmatrix} -4 & 3 \\ 4 & -3 \end{bmatrix} \quad \text{rest} \quad \begin{bmatrix} 1 & -\frac{3}{4} \\ 0 & 0 \end{bmatrix} \quad \begin{array}{c} X_1 = \frac{3}{4} \times_2 \\ 0 & 0 \end{array}$$

$$\vec{X} = X_2 \begin{bmatrix} \frac{3}{4} \\ 1 \end{bmatrix} = \frac{X_1}{4} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$A - (-2)I = \begin{bmatrix} 3 & 3 \\ 4 & 4 \end{bmatrix} \text{ first } \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x_1 & -x_2 \\ x_2 & -x_3 \end{bmatrix}$$

$$\stackrel{?}{x} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

For
$$P = \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix}$$
 $D = \begin{pmatrix} 5 & 0 \\ 0 & -2 \end{pmatrix}$

Find
$$A^4$$
 where $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

Example Continued...

Find
$$A^4$$
 where $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

We know that $D = P^TAP$

when $D = \begin{bmatrix} s & 0 \\ 0 & -2 \end{bmatrix}$, $P = \begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix}$

$$D' : \begin{bmatrix} 625 & 0 \\ 0 & 16 \end{bmatrix} \qquad D'' : P' A'P$$

$$\Rightarrow A'' : PD''P'$$

$$= \begin{bmatrix} 277 & 261 \\ 348 & 314 \end{bmatrix}$$

Suppose A is a nxn notrix, con we define eA.

e = I + A + 1 A2 + 3 A3 + 4 A4 + ...

This is just an example of where computing lots of powers of a matrix may have application.