November 2 MATH 1113 sec. 52 Fall 2018

Section 6.4: Radian Measure

Degree measure is sometimes used in technical fields (surveying and engineering). But degrees complicate many mathematical computations. We prefer another measure that is in some sense unitless ${ }^{1}$.

Radians: (Rad) An angle is measured in radians in relation to a unit circle (circle of radius 1).

An angle $\theta=1$ radian if the angle subtends an arc in a unit circle of length 1.

[^0]
A Radian

Figure: One Radian: The length of the arc equals the radius of the circle.

Radian Measure

The arc-length of a whole unit circle is 2π. So...
There are 2π radians in one circle (a little more than 6 of them)!

Converting Between Degrees \& Radians

Since $360^{\circ}=2 \pi$ rad, we get the following conversion factors:

$$
1^{\circ}=\frac{\pi}{180} \operatorname{rad} \quad \text { and } \quad 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}
$$

Remark: If an angle doesn’t have the degree symbol ${ }^{\circ}$ next to it, it is assumed to be in radians!

Converting Between Angle Measures

- To convert from degrees to radians, multiply by

$$
\frac{\pi}{180} .
$$

- To convert from radians to degrees, multiply by
$\frac{180}{\pi}$ and insert the symbol \circ.

Example

Convert each angle measure to the other units.
(a) 45°

$$
45^{\circ} \frac{\pi}{180^{\circ}}=\frac{45 \pi}{180}=\frac{\pi}{4}
$$

(b) $-\frac{\pi}{6}$

$$
\left(-\frac{\pi}{6} \cdot \frac{180}{\pi}\right)^{0}=\left(\frac{-180}{6}\right)^{0}=-30^{\circ}
$$

(b) $30 \quad\left(30 \cdot \frac{180}{\pi}\right)^{\circ}=\frac{5400}{\pi}^{\circ}$

Question

If $\theta=-210^{\circ}$, then in radians
(a) $\theta=\frac{7 \pi}{6}$
(b) $\theta=-\frac{7 \pi}{6}$
$\frac{-210}{180} \pi$
(c) $\theta=\frac{6 \pi}{7}$
(d) $\theta=-\frac{6 \pi}{7}$
(e) there's no such thing as a negative angle

Some Common Angles: Degree and Radian

θ°	$\theta \mathrm{rad}$
0°	0
30°	$\frac{\pi}{6}$
45°	$\frac{\pi}{4}$
60°	$\frac{\pi}{3}$
90°	$\frac{\pi}{2}$
180°	π
270°	$\frac{3 \pi}{2}$
360°	2π

Angles With Nice Reference Angles

We Recall A Few Terms

Some special names for angles include:

- An acute angle is between 0° and $90^{\circ}\left(0\right.$ and $\left.\frac{\pi}{2}\right)$.
- An obtuse angle is between 90° and $180^{\circ}\left(\frac{\pi}{2}\right.$ and $\left.\pi\right)$.
- A right angle has measure $90^{\circ}\left(\frac{\pi}{2}\right)$.
- A reflex angle has measure between $180^{\circ}(\pi)$ and $360^{\circ}(2 \pi)$.
- Quadrantal angles are integer multiples of $90^{\circ}\left(\frac{\pi}{2}\right)$
- A straight angle has measure $180^{\circ}(\pi)$.
(Of course, not all angles fit into one of these categories.)

Arclength Formula
Given a circle of radius r, the length s of the arc subtended by the (positive) central angle θ (in radians) is given by

$$
s=r \theta
$$

The area of the resulting sector is $A_{\text {sector }}=\frac{1}{2} r^{2} \theta$.

Area of circle $=\pi r^{2}$
The sector is a fraction of the circe. The fraction is $\frac{\theta}{2 \pi}$ th
Area of sector $=$ Area circle \times fraction

$$
A_{\text {sector }}=\pi r^{2}\left(\frac{\theta}{2 \pi}\right)=\frac{1}{2} r^{2} \theta
$$

Example
A circle of radius 12 meters has a sector given by a central angle of 135°. Find the associated arc length and the area of the sector.

Arclength $s=r \theta$ and Are sector $A_{\text {sector }}=\frac{1}{2} r^{2} \theta$ for θ ir radians.

Convent θ to radians

$$
\theta=135^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{3 \pi}{4}
$$

So the auclength

$$
s=(12 \mathrm{~m})\left(\frac{3 \pi}{4}\right)=9 \pi \mathrm{~m}
$$

The sector area

$$
A_{\text {sector }}=\frac{1}{2}(12 n)^{2}\left(\frac{3 \pi}{4}\right)=54 \pi \mathrm{~m}^{2}
$$

Question
An industrial clock has a face that is 3 ft in diameter. What is the area of the sector between the 12 and the 4 hour markings?
(a) $\frac{9 \pi}{2} \mathrm{ft}^{2}$
(b) $\frac{3 \pi}{2} \mathrm{ft}^{2}$

$$
\theta=\frac{2 \pi}{3}
$$

4 out of 12 hour so $\frac{1}{3}$ Clock

$$
\theta=2 \pi \cdot \frac{1}{3}=\frac{2 \pi}{3}
$$

(c) $\frac{3 \pi}{4} \mathrm{ft}^{2}$

$$
A_{\text {area }}=\frac{1}{2}\left(\frac{3}{2} \mathrm{ft}\right)^{2} \cdot\left(\frac{2 \pi}{3}\right)=\frac{1}{2} \cdot \frac{9}{4} \cdot \frac{2}{3} \pi \mathrm{ft}^{2}
$$

(d) $3 \pi \mathrm{ft}^{2}$

$$
=\frac{3 \pi}{4} \mathrm{ft}^{2}
$$

(e) can't be determined without more information

Motion on a Circle: Angular \& Linear Speed

Definition: (angular speed) If an object moves along the arc of a circle through a central angle θ in the time t, the angular speed is denoted by ω (lower case omega) and is defined by

$$
\omega=\frac{\theta}{t}=\frac{\text { angle moved through }}{\text { time }} .
$$

Definition: (linear speed) If the circle has radius r, then the distance traveled is the arclength $s=r \theta$. The linear speed is denoted by ν (lower case nu) and is defined by

$$
\nu=\frac{s}{t}=\frac{r \theta}{t}=r \omega .
$$

Note that this is distance (s) per unit time (t).

Example

Suppose an ant crawls along the rim of a circular glass with radius 2 inches, and traverses the arc indicated in red in 20 seconds. What are the angular and linear speeds of the ant, and how far does it travel?

Angular speed $\omega=\frac{\theta}{t}$, linear speed $\nu=\frac{s}{t}=\frac{r \theta}{t}=r \omega$

$$
\theta=\frac{\pi}{2}+\phi
$$

ϕ is the complement of 60°

The triangle is $30^{\circ}-60^{\circ}-90^{\circ}$

$$
\phi=30\left(\frac{\pi}{180}\right)=\frac{\pi}{6}
$$

$$
\theta=\frac{\pi}{2}+\frac{\pi}{6}=\frac{3 \pi}{6}+\frac{\pi}{6}=\frac{4 \pi}{6}=\frac{2 \pi}{3}
$$

The angular velocity

$$
\omega=\frac{\theta}{t}=\frac{\frac{2 \pi}{3}}{20 \mathrm{sec}}=\frac{\pi}{30} \frac{1}{\mathrm{sec}}
$$

The linear velocity

$$
v=r \omega=(2 \text { in })\left(\frac{\pi}{30} \frac{1}{\sec }\right)=\frac{\pi}{15} \frac{\operatorname{in}}{\sec }
$$

The ont travels

$$
s=r \theta=\operatorname{in}\left(\frac{2 \pi}{3}\right)=\frac{4 \pi}{3} \text { in }
$$

[^0]: ${ }^{1}$ We'll still call them units, but it will become more clear that they aren't units in the traditional sense.

