November 2 MATH 1113 sec. 52 Fall 2018

Section 6.4: Radian Measure

Degree measure is sometimes used in technical fields (surveying and engineering). But degrees complicate many mathematical computations. We prefer another measure that is in some sense *unitless*¹.

Radians: (Rad) An angle is measured in radians in relation to a unit circle (circle of radius 1).

An angle $\theta = 1$ radian if the angle subtends an arc in a unit circle of length 1.

¹We'll still call them units, but it will become more clear that they aren't units in the traditional sense.

A Radian

Figure: One Radian: The length of the arc equals the radius of the circle.

October 31, 2018

Radian Measure

The arc-length of a whole unit circle is 2π . So...

There are 2π **radians in one circle** (a little more than 6 of them)!

Converting Between Degrees & Radians
Since
$$360^{\circ} = 2\pi$$
 rad, we get the following conversion factors:
 $1^{\circ} = \frac{\pi}{180}$ rad and $1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$

Remark: If an angle doesn't have the degree symbol ° next to it, it is assumed to be in radians!

October 31, 2018

Converting Between Angle Measures

To convert from degrees to radians, multiply by

 $\frac{\pi}{180}$.

To convert from radians to degrees, multiply by

 $\frac{180}{\pi}$ and insert the symbol \circ .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 31, 2018

Example

Convert each angle measure to the other units.

(a)
$$45^{\circ}$$
 $45^{\circ}\frac{\pi}{180^{\circ}}=\frac{\pi}{180}$

(b)
$$-\frac{\pi}{6}$$
 $\left(-\frac{\pi}{6} \cdot \frac{180}{\pi}\right)^{\circ} = \left(-\frac{180}{6}\right)^{\circ} = -30^{\circ}$

(b) 30
$$(30.\frac{180}{r})^{\circ} = \frac{5400}{rr}^{\circ}$$

Question

If $\theta = -210^{\circ}$, then in radians (a) $\theta = \frac{7\pi}{6}$ -<u>210</u> Tr 180 (b) $\theta = -\frac{7\pi}{6}$ (c) $\theta = \frac{6\pi}{7}$ (d) $\theta = -\frac{6\pi}{7}$

(e) there's no such thing as a negative angle

October 31, 2018

Some Common Angles: Degree and Radian

θ°	θ rad
0 °	0
30 °	$\frac{\pi}{6}$
45°	$\frac{\pi}{4}$
60°	$\frac{\pi}{3}$
90 °	$\frac{\pi}{2}$
180°	π
270°	$\frac{3\pi}{2}$
360°	2 π

э

イロト イヨト イヨト イヨト

Angles With Nice Reference Angles

October 31, 2018 8 / 19

We Recall A Few Terms

Some special names for angles include:

- An **acute** angle is between 0° and 90° (0 and $\frac{\pi}{2}$).
- An **obtuse** angle is between 90° and 180° ($\frac{\pi}{2}$ and π).
- A **right** angle has measure 90° ($\frac{\pi}{2}$).
- A reflex angle has measure between 180° (π) and 360° (2π).
- **Quadrantal** angles are integer multiples of 90° $(\frac{\pi}{2})$
- A straight angle has measure 180° (π).

(Of course, not all angles fit into one of these categories.)

Arclength Formula

Given a circle of radius *r*, the length *s* of the arc subtended by the (positive) central angle θ (**in radians**) is given by

$$s = r\theta$$

The area of the resulting sector is $A_{sector} = \frac{1}{2}r^2\theta$.

Example

A circle of radius 12 meters has a sector given by a central angle of 135°. Find the associated arc length and the area of the sector.

Archensh s=r0 and Arcc Sector Asector = 200 for Q in radians. Convert O to radions $\theta = 135^\circ \cdot \frac{\pi}{180^\circ} = \frac{3\pi}{4}$ So the andersth $S=(12m)\left(\frac{3\pi}{4}\right)=9\pi$ m < 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The sector and $A_{\text{secher}} = \frac{1}{2} \left(12 \text{ m} \right)^2 \left(\frac{3\pi}{4} \right) = 54\pi \text{ m}^2$

Question

An industrial clock has a face that is 3 ft in **diameter**. What is the area of the sector between the 12 and the 4 hour markings?

4 D K 4 B K 4 B K 4 B K

October 31, 2018

13/19

(e) can't be determined without more information

Motion on a Circle: Angular & Linear Speed

Definition: (angular speed) If an object moves along the arc of a circle through a central angle θ in the time t, the angular speed is denoted by ω (lower case omega) and is defined by

$$\omega = rac{ heta}{t} = -rac{ ext{angle moved through}}{ ext{time}}$$

Definition: (linear speed) If the circle has radius r, then the distance traveled is the arclength $s = r\theta$. The linear speed is denoted by ν (lower case nu) and is defined by

$$\nu = \frac{s}{t} = \frac{r\theta}{t} = r\omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = つへの October 31, 2018

14/19

Note that this is distance (s) per unit time (t).

Example

Suppose an ant crawls along the rim of a circular glass with radius 2 inches, and traverses the arc indicated in red in 20 seconds. What are the angular and linear speeds of the ant, and how far does it travel?

October 31, 2018 16 / 19

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

The angula velocity $\omega = \frac{0}{t} = \frac{2\pi}{3} = \frac{\pi}{30} \frac{1}{5ec}$ The linear velocity $V = \Gamma \omega = (Zin) \left(\frac{\pi}{30} \frac{1}{scc} \right) = \frac{\pi}{15} \frac{in}{sec}$ The ont travels $S = \Gamma \Theta = 2in \left(\frac{2\pi}{3}\right) = \frac{4\pi}{3} \hat{c}n$

October 31, 2018 17 / 19

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●