Nov. 2 Math 1190 sec. 52 Fall 2016

Section 4.7: Optimization

Optimization problems arise in every field of study and every industry.

- minimize cost and maximize revenue,
- maximize crop yield,
- minimize driving time,
- maximize volume,
- minimize energy

Often, some constraint (extra condition) must simultaneously be satisfied.

$2^{\text {nd }}$ Derivative Test

Recall: If c is a critical number of the function f, and

- $f^{\prime \prime}(c)>0$, then f has a local minumum at c
- $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Applied Optimization Example

A $216 \mathrm{~m}^{2}$ rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of its sides. What dimensions of the outer rectangle will require the smallest total length of fencing and how much fencing will be needed?
we want to minimize the length of fence.
we have to satisfy the constraint that the enclosure

$$
\text { is } 216 \mathrm{~m}^{2} \text {. }
$$

Figure: Different pea patch configuration that all enclose $216 \mathrm{~m}^{2}$.
we consida a representative rectenguler patch
 with width x and length y metes.
y
x

The area $A=x y$ and the total perimeter $P=3 x+2 y$. were given the constraint $A=216 \mathrm{~m}^{2}$ i.e. $x y=216 \mathrm{~m}^{2}$. we want to minimize P. We need to reduce P to a function of only one variable. We can write y in terms of x by using $x y=216$.

$$
y=\frac{216}{x} \text { so } p=3 x+2\left(\frac{216}{x}\right)=3 x+\frac{432}{x}
$$

Find critical numbers of P :

$$
=3 x+432 x^{-1}
$$

$$
P^{\prime}(x)=3-432 x^{-2}=3-\frac{432}{x^{2}}
$$

$P^{\prime}(x)$ is undefined if $x=0$. This is not in the domain of P Plus as a length, we reed $x>0$.

$$
\begin{gathered}
P^{\prime}(x)=0 \Rightarrow 3-\frac{432}{x^{2}}=0 \Rightarrow 3=\frac{432}{x^{2}} \\
x^{2}=\frac{432}{3}=144
\end{gathered}
$$

$\Rightarrow x=12$ or $x=-12$. As $x>0$, we get one critical number 12 .

Lets verity that $x=12$ actually, minimizes P.

$$
P^{\prime}(x)=3-\frac{432}{x^{2}}=3-432 x^{-2}
$$

$\partial^{n d}$ Der. test : $\quad p^{\prime \prime}(x)=-2(-432) x^{-3}=\frac{2(432)}{x^{3}}$
$P^{\prime \prime}(12)=\frac{2(432)}{(12)^{3}}$ which is positive.
So $x=12$ minimizes P b) the $Z^{\text {nd }}$ der. test.

As $y=\frac{216}{x}$, the minimizing $y=\frac{216}{12}=18$
when $x=12$ and $y=18$

$$
p=3(12)+2(18)=36+36=72
$$

The optimum outer rectangle should be $12 \mathrm{~m} \times 18 \mathrm{~m}$ requiring 72 m ot fencing.

Applied Optimization Example
Show that among all rectangles with perimeter 8 m , the one with the largest area is a square.

Consider the rectangle with width $x m$ and length $y \mathrm{~m}$. The ara

$A=x y$ and the perimeter

$$
P=2 x+2 y .
$$

we wont to maximize $A=x y$ given the constraint

$$
p=8 n=2 x+2 y .
$$

* Fur a square, it world tween out that $x=y$.

From $\quad p=8, \quad 2 x=8-2 y \Rightarrow x=4-y$

So

$$
A=x y=(4-y) y=4 y-y^{2}
$$

Find criticed number(s):
$A^{\prime}(0)=4-2 y \quad$ this is alway defined.

$$
A^{\prime}(y)=0 \Rightarrow 4-2 y=0 \Rightarrow 2 y=4 \Rightarrow y=2 .
$$

Let's verity thot 2 maximizes A.

$$
A^{\prime \prime}(y)=-2
$$

So $A^{\prime \prime}(2)=-2$ which is negative.

Hence $y=2$ maximizes A by the $2^{\text {nd }}$ denivotine test.

As $x=4-y$, when $y=2 m, x=4-2=2 m$

The rectangle with the maximin area is the $2 m \times 2 m$ square.

Applied Optimization Example

Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius 10 .

Figure: Different cylinders can be inscribed in the same sphere. We want to find the largest possible one.

Weill take a cross section of the sphere penpendicula to the base of the cylinder.

The volume V of a cylinder of radius r and height h is

$$
V=\pi r^{2} h
$$

$10=$ radius of sphere

$1-28 \rightarrow$

From the figure $h^{2}+(2 r)^{2}=(2 \cdot 10)^{2}$
This is a constraint. We wont to maximize

$$
V=\pi r^{2} h
$$

we have $h^{2}+4 r^{2}=400$. We can solve for r^{2}

$$
4 r^{2}=400-h^{2} \Rightarrow r^{2}=100-\frac{1}{4} h^{2}
$$

So

$$
V=\pi\left(100-\frac{1}{4} h^{2}\right) h=\pi\left(100 h-\frac{1}{4} h^{3}\right)
$$

Find the critical numben(s):

$$
\begin{gathered}
V^{\prime}(h)=\pi\left(100-\frac{3}{4} h^{2}\right) \quad \text { which is always } \\
\text { defined. }
\end{gathered}
$$

$$
V^{\prime}(h)=0 \Rightarrow \pi\left(100-\frac{3}{4} h^{2}\right)=0
$$

$$
\begin{aligned}
& \Rightarrow \quad 100-\frac{3}{4} h^{2}=0 \Rightarrow \frac{3}{4} h^{2}=100 \\
& h^{2}=\frac{400}{3} \Rightarrow h=\frac{20}{\sqrt{3}} \text { or } h=\frac{-20}{\sqrt{3}}
\end{aligned}
$$

$h>0$ as a height so we houe one critical rumber $\frac{20}{\sqrt{3}}$.

Leter venify it maximizes V.

$$
V^{\prime}(h)=\pi\left(100-\frac{3}{4} h^{2}\right)
$$

$$
v^{\prime \prime}(h)=\pi\left(\frac{-6}{4} h\right)=\frac{-6 \pi}{4} h
$$

$\Rightarrow V^{\prime \prime}\left(\frac{20}{\sqrt{3}}\right)=\frac{-6 \pi}{4}\left(\frac{20}{\sqrt{3}}\right)$ which is negative.

So $h=\frac{20}{\sqrt{3}}$ maximizes the Volume.

$$
V=\pi\left(100 h-\frac{1}{4} h^{3}\right)
$$

So the maximum volume is

$$
V\left(\frac{20}{\sqrt{3}}\right)=\pi\left(100 \cdot \frac{20}{\sqrt{3}}-\frac{1}{4}\left(\frac{20}{\sqrt{3}}\right)^{3}\right)
$$

$$
\begin{aligned}
& =\pi\left(\frac{2000}{\sqrt{3}}-\frac{1}{4} \frac{20^{3}}{3 \sqrt{3}}\right) \\
& =\pi\left(\frac{2000}{\sqrt{3}}-\frac{2000}{3 \sqrt{3}}\right) \\
& =\frac{2000 \pi}{\sqrt{3}}\left(1-\frac{1}{3}\right)=\frac{2000 \pi}{\sqrt{3}}\left(\frac{2}{3}\right)
\end{aligned}
$$

The max volume is $\frac{4000 \pi}{3 \sqrt{3}}$.

