November 2 Math 2306 sec 51 Fall 2015

Section 7.3: Translation Theorems

Theorem (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

Consequently $\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} f(t)$ if $\mathscr{L}^{-1}\{F(s)\}=f(t)$.

Solve the IVP using the Laplace Transform

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}+13 y=39 \quad y(0)=3, y^{\prime}(0)=1 \\
& \mathcal{L}\left\{y^{\prime \prime}-4 y^{\prime}+13 y\right\}=\mathcal{L}\{39\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}-4 \mathcal{L}\left\{y^{\prime}\right\}+B \mathcal{L}\{y\}=39 \mathcal{L}\{1\} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)-4(s Y(s)-y(0))+13 Y(s)=\frac{39}{s} \\
& \left(s^{2}-4 s+B\right) Y(s)-3 s-1+12=\frac{39}{s}
\end{aligned}
$$

$$
\begin{aligned}
& \left(s^{2}-4 s+13\right) Y(s)=\frac{39}{s}+3 s-11 \\
& Y(s)=\frac{39}{s\left(s^{2}-4 s+13\right)}+\frac{3 s-11}{s^{2}-4 s+13}
\end{aligned}
$$

Do partial fraction decomp(s)

$$
\begin{aligned}
& \frac{39}{s\left(s^{2}-4 s+13\right)}=\frac{A s+B}{s^{2}-4 s+B}+\frac{C}{s} \quad \begin{array}{c}
\text { Clea } \\
\text { frations }
\end{array} \\
& 39=(A s+B) s+C\left(s^{2}-4 s+13\right)
\end{aligned}
$$

$$
\begin{aligned}
& O s^{2}+O s+39=A s^{2}+B s+C s^{2}-4 C s+13 C \\
&= \underline{(A+C)} s^{2}+(\underline{(B-4 C)}+1 B C \\
& B C=39 \Rightarrow C=3 \\
& B-4 C=0 \Rightarrow B=4 C=12 \\
& A+C=0 \Rightarrow A=-C=-3 \\
& Y(s)= \frac{-3 s+12}{s^{2}-4 s+13}+\frac{3}{s}+\frac{3 s-11}{s^{2}-4 s+13}
\end{aligned}
$$

$$
Y(s)=\frac{1}{s^{2}-4 s+13}+\frac{3}{s}
$$

complete the square

$$
\begin{aligned}
& s^{2}-4 s+13=s^{2}-4 s+4-4+13 \\
&=(s-2)^{2}+9 \\
& Y(s)=\frac{1}{(s-2)^{2}+9}+\frac{3}{s}
\end{aligned}
$$

$$
\begin{gathered}
Y(s)=\frac{1}{3} \frac{3}{(s-2)^{2}+9}+3 \frac{1}{s} \\
y(t)=\mathcal{L}^{-1}\{Y(s)\}=\frac{1}{3} \mathscr{L}^{-1}\left\{\frac{3}{(s-2)^{2}+9}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\} \\
y=\frac{1}{3} e^{2 t} \sin 3 t+3
\end{gathered}
$$

