November 2 Math 3260 sec. 57 Fall 2017

Section 6.7 Inner Product Spaces

Definition: An inner product on a vector space V is a function which
assigns to each pair of vectors u and v in V a real number denoted by
< u,v > and that satisfies the following four axioms: For every u, v, w
in V and scalar ¢

I <u,V>=<Vv,u>,
H<U+VvV,W>=<UW>+ <V,W>,
i <ecu,v>=c<uv>,

iv <u,u>>0and <u,u>=0ifandonly ifu=0.

A vector space with an inner product is called an inner product space.
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Norm, Distance, and Orthogonality
Norm: The norm of a vector v is ||v| = /< V,V >.

A Unit Vector: is a vector whose norm is 1.
Distance: The distance between two vectors u and v is |ju — v||.
Orthogonality: Two vectors u and v are orthogonal if <u,v >=0
Orthogonal Projection: The orthogonal projection of v onto u is the
vector

N << v,u >)

v=(——""—|u

<u,u>
Pythagorean Theorem: If u and v are orthogonal, then
lu-+v|[® = Jull® + v
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Example (using some calculus)

Consider the set CJ[a, b] of continuous functions defined on the interval
[a, b]. For f and g in C|a, b]

< f,g>= / f(t)g(t) dt
defines an inner product on CJa, b].

(a) Show that f(x) = sin x and g(x) = cos x are orthogonal on [, 7].
™~
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-
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Example continued...
(b) Find the distance between f and g in C[—, 7].
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Some Key Inequalities

Cauchy Schwarz: In an inner product space V, for any u, v we have
| <u,v> [ < ulffiv].

|V\ R“’\ ul —\N éo\' Pn‘)\‘ck ) é(\,“( q‘:n\.\._;r L\'\

as
NI ¢ (\\t\\ LIS\

Triangle: For any u, v

[Ju—+ V]| < fjulf + [jv]-
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Gram Schmidt

Let P>[—1, 1] be the set of polynomials of degree at most 2 defined for
—1 <t < 1. Using the following inner product

1
(p.q) = /_1 p(t)a(t) dt

find an orthogonal basis for P» by starting with the elementary basis
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Section 5.1: Eigenvectors and Eigenvalues

Consider the matrix A = [ 3 -2

1 0

} and the vectors u = [ 1

-1 ] and

V= [ ? ] Plot u, Au, v, and Av on the axis on the next slide.
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Example Plot
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Eigenvalues and Eigenvectors

Note that in this example, the matrix A seems to both stretch and
rotate the vector u. But the action of A on the vector v is just a
stretch/compress.

We wish to consider matrices with vectors that satisfy relationships
such as

Ax =2x, or Ax = —4x, ormoregenerally Ax = \x

for constant A—and for nonzero vector Xx.
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Definition of Eigenvector and Eigenvalue

Definition: Let A be an n x n matrix. A nonzero vector X such that
AX = )X

for some scalar ) is called an eigenvector of the matrix A.

A scalar X such that there exists a nonzero vector x satisfying Ax = Ax
is called an eigenvalue of the matrix A. Such a nonzero vector x is an
eigenvector corresponding to .

Note that built right into this definition is that the eigenvector x must be
nonzero!
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Example

The number A = —4 is an eigenvalue of the matrix matrix

A= [ ; g ] Find the corresponding eigenvectors.
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Eigenspace

Definition: Let Abe an n x nmatrix and A and eigenvalue of A. The
set of all eigenvectors corresponding to A—i.e. the set

{x € R" | x # 0 and Ax = A\x},

is called the eigenspace of A corresponding to \.

Remark: The eigenspace is the same as the null space of the matrix
A — M\l It follows that the eigenspace is a subspace of R”.
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Example

4 -1 6
Thematrix A= 2 1 6 ] has eigenvalue A = 2. Find a basis for
2 -1 8

the eigenspace of A corresponding to .
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Matrices with Nice Structure

Theorem: If Ais an n x ntriangular matrix, then the eigenvalues of A
are its diagonal elements.

Find the eigenvalues of the matrix A = { -2
1
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