November 2 Math 3260 sec. 58 Fall 2017

Section 6.7 Inner Product Spaces

Definition: An inner product on a vector space V is a function which assigns to each pair of vectors \mathbf{u} and \mathbf{v} in V a real number denoted by $<\mathbf{u}, \mathbf{v}>$ and that satisfies the following four axioms: For every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and scalar c
i $\langle\mathbf{u}, \mathbf{v}\rangle=<\mathbf{v}, \mathbf{u}\rangle$,
ii $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=<\mathbf{u}, \mathbf{w}>+\langle\mathbf{v}, \mathbf{w}\rangle$,
iii $\langle\mathbf{c u}, \mathbf{v}\rangle=\boldsymbol{c}<\mathbf{u}, \mathbf{v}\rangle$,
iv $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ and $<\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$.
A vector space with an inner product is called an inner product space.

Norm, Distance, and Orthogonality

Norm: The norm of a vector \mathbf{v} is $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
A Unit Vector: is a vector whose norm is 1.

Distance: The distance between two vectors \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$.
Orthogonality: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$

Orthogonal Projection: The orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$
\hat{\mathbf{v}}=\left(\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle}\right) \mathbf{u} .
$$

Pythagorean Theorem: If \mathbf{u} and \mathbf{v} are orthogonal, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Example (using some calculus)

Consider the set $C[a, b]$ of continuous functions defined on the interval $[a, b]$. For f and g in $C[a, b]$

$$
<f, g>=\int_{a}^{b} f(t) g(t) d t
$$

defines an inner product on $C[a, b]$.
(a) Show that $f(x)=\sin x$ and $g(x)=\cos x$ are orthogonal on $[-\pi, \pi]$.

$$
\begin{array}{rlrl}
\langle f, g\rangle & =\int_{-\pi}^{\pi} f(x) g(x) d x & & \sin 2 \theta=2 \sin \theta \cos \theta \tag{ID}\\
& =\int_{-\pi}^{\pi} \sin x \cos x d x \\
& =\int_{-\pi}^{\pi} \frac{1}{2} \sin (2 x) d x
\end{array}
$$

$$
\begin{aligned}
=\left.\frac{-1}{4} \cos (2 x)\right|_{-\pi} ^{\pi} & =\frac{-1}{4}(\cos (2 \pi)-\cos (-2 \pi)) \\
& =\frac{-1}{4}(1-1)=0
\end{aligned}
$$

So $f(x)$ and $g(x)$ are orthogonal.

Example continued...
(b) Find the distance between f and g in $C[-\pi, \pi]$.

The square of the distance $\|f-g\|^{2}$

$$
\begin{aligned}
\|f-g\|^{2}=\langle f-g, f-g\rangle & =\int_{-\pi}^{\pi}(f(x-g(x))(f(x)-g(x)) d x \\
& =\int_{-\pi}^{\pi}\left(\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x\right) d x \\
& =\int_{-\pi}^{\pi}\left(\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x\right) d x \\
& =\int_{-\pi}^{\pi}(1-2 \sin x \cos x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\pi}^{\pi} d x-2 \int_{-\pi}^{\pi} \sin x \cos x d x \\
& 0_{0}^{\prime \prime} \text { by part (a) } \\
& =\int_{-\pi}^{\pi} d x=\left.x\right|_{-\pi} ^{\pi}=\pi-(-\pi)=2 \pi
\end{aligned}
$$

So the distance between $\sin x$ and $\cos x$ is $\sqrt{2 \pi}$

Some Key Inequalities

Cauchy Schwarz: In an inner product space V, for any \mathbf{u}, \mathbf{v} we have

$$
|<\mathbf{u}, \mathbf{v}>| \leq\|\mathbf{u}\|\|\mathbf{v}\| .
$$

Triangle: For any \mathbf{u}, \mathbf{v}

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

Gram Schmidt
Let $\mathbb{P}_{2}[-1,1]$ be the set of polynomials of degree at most 2 defined for $-1 \leq t \leq 1$. Using the following inner product

$$
\langle\mathbf{p}, \mathbf{q}\rangle=\int_{-1}^{1} \mathbf{p}(t) \mathbf{q}(t) d t
$$

find an orthogonal basis for \mathbb{P}_{2} by starting with the elementary basis $\left\{1, t, t^{2}\right\}$.

$$
\text { well coll the new basis }\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}
$$

$$
\begin{aligned}
& \vec{v}_{1}=1 \\
& \vec{v}_{2}=t-\frac{\langle t, 1\rangle}{\langle 1,1\rangle} 1 \\
& \quad\langle t, 1\rangle=\int_{-1}^{1} t \cdot\left|d t=\frac{t^{2}}{2}\right|_{-1}^{1}=\frac{r^{2}}{2}-\frac{(-1)^{2}}{2}=\frac{1}{2}-\frac{1}{2}=0
\end{aligned}
$$

So $\vec{v}_{1}=1$ and $\vec{v}_{2}=t$

$$
\begin{aligned}
& \left.\hat{v}_{3}=t^{2}-\frac{\left\langle t^{2}, 1\right\rangle}{\langle 1,1\rangle} \right\rvert\,-\frac{\left\langle t^{2}, t\right\rangle}{\langle t, t\rangle} t \\
& \left\langle t^{2}, 1\right\rangle=\int_{-1}^{1} t^{2} \cdot\left|d t=\frac{t^{3}}{3}\right|_{-1}^{1}=\frac{1^{3}}{3}-\frac{(-1)^{3}}{3}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3} \\
& \langle 1,1\rangle=\int_{-1}^{1} 1 \cdot 1 d t=\int_{-1}^{1} d t=\left.t\right|_{-1} ^{1}=1-(-1)=2 \\
& \left\langle t^{2}, t\right\rangle=\int_{-1}^{1} t^{2} \cdot t d t=\int_{-1}^{1} t^{3} d t=\left.\frac{t^{4}}{4}\right|_{-1} ^{1}=\frac{1^{4}}{4}-\frac{(-1)^{4}}{4}=\frac{1}{4}-\frac{1}{4}=0
\end{aligned}
$$

so $\quad \vec{V}_{3}=t^{2}-\frac{2 / 3}{2} \cdot 1=t^{2}-\frac{1}{3}$

An orthogonal basis is

$$
\left\{1, t, t^{2}-\frac{1}{3}\right\}
$$

Section 5.1: Eigenvectors and Eigenvalues
Consider the matrix $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$ and the vectors $\mathbf{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Plot $\mathbf{u}, A \mathbf{u}, \mathbf{v}$, and $A \mathbf{v}$ on the axis on the next slide.

$$
\begin{aligned}
& A_{u}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3-2 \\
-1+0
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-1
\end{array}\right] \\
& A_{v}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6-2 \\
2+0
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

Example Plot

Eigenvalues and Eigenvectors

Note that in this example, the matrix A seems to both stretch and rotate the vector \mathbf{u}. But the action of A on the vector \mathbf{v} is just a stretch/compress.

We wish to consider matrices with vectors that satisfy relationships such as

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { or } \quad A \mathbf{x}=-4 \mathbf{x}, \quad \text { or more generally } \quad A \mathbf{x}=\lambda \mathbf{x}
$$

for constant λ-and for nonzero vector \mathbf{x}.

Definition of Eigenvector and Eigenvalue

Definition: Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.

A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Note that built right into this definition is that the eigenvector \mathbf{x} must be nonzero!

Example
The number $\lambda=-4$ is an eigenvalue of the matrix matrix
$A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Find the corresponding eigenvectors.
We wort $\vec{x} \neq 0$ such that $A \vec{x}=-4 \vec{x}$
For $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ our equation is $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=-4\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
as a cistern

$$
\left.\begin{array}{r}
x_{1}+6 x_{2}=-4 x_{1} \quad \text { we con subject the } \\
5 x_{1}+2 x_{2}=-4 x_{2} \\
\text { stuff on the right } \\
(1-(-4)) x_{1}+6 x_{2}=0 \\
5 x_{1}+(2-(-4)) x_{2}=0
\end{array}\right\} \Rightarrow\left[\begin{array}{ll}
5 & 6 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
5 & 6 & 0 \\
5 & 6 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 6 / 5 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=\frac{-6}{5} x_{2} \\
& x_{2} \text {-free }
\end{aligned}
$$

So all eigen vectors look like

$$
\stackrel{\rightharpoonup}{x}=x_{2}\left[\begin{array}{c}
-\frac{6}{5} \\
1
\end{array}\right] \text { for } \quad x_{2} \neq 0
$$

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ-ie. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \neq \mathbf{0} \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\},
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

$$
\text { In the } 2 \times 2 \text { case } \quad A-\lambda I=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

Example
The matrix $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ has eigenvalue $\lambda=2$. Find a basis for the eigenspace of A corresponding to λ.

The honogereous system has coff matrix $A-2 I$

$$
\begin{aligned}
& A-2 I=\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \\
& {\left[\begin{array}{ccc}
2 & -1 & 6 \\
2-1 & 6 \\
2 & -1 & 6
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x_{1}=\frac{1}{2} x_{2}-3 x_{3}} \\
& x_{2}, x_{3}-f \text { free }
\end{aligned}
$$

Solutions

$$
\vec{x}=x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

A basis for the eigen space is

$$
\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

Matrices with Nice Structure

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & \pi & 0 \\ -1 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { A is lower triangular. The eigen values ane } \\
& \qquad \lambda_{1}=3, \lambda_{2}=\pi, \lambda_{3}=1
\end{aligned}
$$

Example
Suppose $\lambda=0$ is an eigenvalue ${ }^{2}$ of a matrix A. Argue that A is not invertible.

Then must be an eigenvector $\dot{x} \neq \overrightarrow{0}$ such that $A \vec{x}=0 \vec{x}=\overrightarrow{0}$. Since $\vec{x} \neq \overrightarrow{0}$ we have a nontruid solution to the homogenear equation $A \vec{x}=\overrightarrow{0}$. By the "invertible matrix the or em" A is not invertible.
${ }^{2}$ Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorems

Theorem: A square matrix A is invertible if and only if zero is not and eigenvalue.

Theorem: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{p}$, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent.

