November 30 Math 2306 sec 51 Fall 2015

Section 11.3: Fourier Cosine and Sine Series

 Half Range Sine and Half Range Cosine Series: For f defined on $0<x<p$.Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$ where $a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$ where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Half Range Series

For the given function, plot the graph of the function along with three full periods on the interval $(-3 p, 3 p)$ of (a) the half range cosine series and (b) the half range sine series.

$$
f(x)=\left\{\begin{array}{ll}
x, & 0 \leq x<\frac{3}{2} \\
3-x, & \frac{3}{2} \leq x<3
\end{array} \quad p=3\right.
$$

Figure: Plot of f alone.

(a) Even Extension

(b) Odd Extension

Figure: Half range sine series.

Solution of a Differential Equation

An undamped spring mass system has a mass of 2 kg attached to a spring with spring constant $128 \mathrm{~N} / \mathrm{m}$. The mass is driven by an external force $f(t)=2 t$ for $-1<t<1$ that is 2-periodic so that $f(t+2)=f(t)$ for all $t>0$. Determine a particular solution x_{p} for the displacement for $t>0$.

$$
\begin{aligned}
& m x^{\prime \prime}+k x=f(t) \quad m=2, \quad k=128 \\
& 2 x^{\prime \prime}+128 x=f(t) \quad \Rightarrow \quad x^{\prime \prime}+64 x=\frac{1}{2} f(t)
\end{aligned}
$$

Since f is odd and 2 -periodic, we can express f in a sine series

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t)
$$

where

$$
\begin{aligned}
& b_{n}=\frac{2}{1} \int_{0}^{1} f(t) \sin (n \pi t) d t \\
&=2 \int_{0}^{1} 2 t \sin (n \pi t) d t \quad \text { Parts: } \\
&=4\left[\left.\frac{-t}{n \pi} \cos (n \pi t)\right|_{0} ^{1}+\frac{1}{n \pi} \int_{0}^{1} \operatorname{cor}(n \pi t) d t \quad u=t \quad d u=\sin (n \pi t) d t\right. \\
&=4\left[\frac{-1}{n \pi} \cos (n \pi)-0+\left.\frac{1}{n^{2} \pi^{2}} \operatorname{Sin}^{1}(n \pi t)\right|_{0} ^{1} \quad v=\frac{-1}{n \pi} \cos (n \pi t)\right. \\
&=4\left(\frac{-1}{n \pi}\right)(-1)^{n}=\frac{4(-1)^{n+1}}{n \pi}
\end{aligned}
$$

$$
f(t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi} \sin (n \pi t)
$$

So the ODE becomes

$$
\begin{aligned}
& x^{\prime \prime}+64 x=\frac{1}{2} \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi} \sin (n \pi t) \\
& x^{\prime \prime}+64 x=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
\end{aligned}
$$

In the spirit of the method of undetermined coff.
let's guess that

$$
x_{p}=\sum_{n=1}^{\infty} B_{n} \sin (n \pi t)
$$

Substitute this into the D.E.

$$
\begin{aligned}
& x_{p}^{\prime}=\sum_{n=1}^{\infty} B_{n}(n \pi) \operatorname{Cos}(n \pi t) \\
& x_{p}^{\prime \prime}=\sum_{n=1}^{\infty} B_{n}(n \pi)^{2}(-\sin (n \pi t))=-\sum_{n=1}^{\infty} B_{n}(n \pi)^{2} \operatorname{Sin}(n \pi t)
\end{aligned}
$$

So $x_{p}^{\prime \prime}+64 x_{p}=-\sum_{n=1}^{\infty} B_{n}(n \pi)^{2} \operatorname{Sin}(n \pi t)+64 \sum_{n=1}^{\infty} B_{n} \operatorname{Sin}(n \pi t)$

$$
=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \operatorname{Sin}(n \pi t)
$$

Collecting on the left

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[B_{n} \operatorname{Sin}(n \pi t)\left(-(n \pi)^{2}+64\right)\right]=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t) \\
& \sum_{n=1}^{\infty}\left[\left(64-n^{2} \pi^{2}\right) B_{n} \sin (n \pi t)\right]=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
\end{aligned}
$$

Matching coefficients of $\sin (n \pi t)$ for each n

$$
\left(64-n^{2} \pi^{2}\right) B_{n}=\frac{2(-1)^{n+1}}{n \pi} \quad \begin{aligned}
& \text { Note } \\
& 64-n^{2} \pi^{2} \neq 0
\end{aligned}
$$

for all n

$$
B_{n}=\frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)}
$$

Finally, the particula Solution is

$$
x_{p}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)} \sin (n \pi t) .
$$

An Eigenvalue Problem

An eigenvalue problem consists of a Boundary Value Problem which includes an unknown parameter λ. The task is to determine values of the parameter and corresponding nonzero functions (i.e. nontrivial) that solve the BVP. The values are called eigenvalues and the corresponding functions are called eigenfunctions.

Example: Solve $-u^{\prime \prime}=\lambda u$ for $0<x<1$ subject to $u(0)=0$ and $u(1)=0$.

Rewrite the DE

$$
u^{\prime \prime}+\lambda u=0
$$

The characteristic eqn is

$$
m^{2}+\lambda=0
$$

we con consider cases, $\lambda=0, \lambda<0$ or $\lambda>0$

Case 1: $\lambda=0 \quad m^{2}=0 \Rightarrow m=0$ repeated the solutions are $u_{1}=e^{o x}=1, \quad u_{2}=x e^{0 x}=x$

The genned soln. is $u=C_{1}+C_{2} x$
Apply $u(0)=0$ and $u(1)=0$

$$
u(0)=c_{1}+c_{2} \cdot 0=c_{1}=0 \quad\left\{\begin{array}{l}
u(x)=0 \\
\text { only the }
\end{array}\right.
$$

$$
u(1)=c_{2} \cdot 1=0 \Rightarrow c_{2}=0
$$

only the trivia Solution exists

So 0 is not on eigen value

Case 2: $\lambda<0$ let $\lambda=-\alpha^{2}$, for $\alpha>0$

$$
\begin{aligned}
& m^{2}-\alpha^{2}=0 \Rightarrow m= \pm \alpha \\
& u_{1}=e^{\alpha x} \text { and } u_{2}=e^{-\alpha x} \\
& u=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x} \\
& u(0)=c_{1} e^{0}+c_{2} e^{0}=0 \Rightarrow c_{1}+c_{2}=0 \\
& u(1)=c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 \Rightarrow c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 \\
& c_{1}=-c_{2}
\end{aligned}
$$

$$
\begin{aligned}
-c_{2} e^{\alpha}+c_{2} e^{-\alpha}=0 \Rightarrow c_{2} e^{\alpha}=c_{2} e^{-\alpha} \\
c_{2} e^{2 \alpha}=c_{2} \Rightarrow c_{2}=0 \quad \text { since } \alpha>0
\end{aligned}
$$

Since $c_{1}=-c_{2}, c_{1}=0$

So the only solution is the trivia one

$$
u=0 .
$$

$\lambda<0$ doesnt give any eigenvalues.

Well wrap this up on Wednesday.

