November 30 Math 2306 sec 54 Fall 2015

Section 11.3: Fourier Cosine and Sine Series

 Half Range Sine and Half Range Cosine Series: For f defined on $0<x<p$.Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$ where $a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$ where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Solution of a Differential Equation

An undamped spring mass system has a mass of 2 kg attached to a spring with spring constant $128 \mathrm{~N} / \mathrm{m}$. The mass is driven by an external force $f(t)=2 t$ for $-1<t<1$ that is 2-periodic so that $f(t+2)=f(t)$ for all $t>0$. Determine a particular solution x_{p} for the displacement for $t>0$.

$$
\begin{aligned}
& m x^{\prime \prime}+k x=f(t) \quad m=2 \text { and } k=128 \\
& 2 x^{\prime \prime}+128 x=f(t) \Rightarrow x^{\prime \prime}+64 x=\frac{1}{2} f(t)
\end{aligned}
$$

f is odd and 2 -periodic, so w can write

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t) \quad \text { here } p=1 \frac{n \pi}{p}=n \pi
$$

where

$$
\begin{array}{rlr}
b_{n} & =\frac{2}{1} \int_{0}^{1} f(t) \sin (n \pi t) d t \\
& =2 \int_{0}^{1} 2 t \sin (n \pi t) d t & \quad B_{y} \text { parts } \\
& =4\left[\left.\frac{-t}{n \pi} \cos (n \pi t)\right|_{0} ^{1}+\frac{1}{n \pi} \int_{0}^{1} \cos (n \pi t) d t \quad u=t \quad d n=d t\right. \\
& =4\left[\frac{-1}{n \pi} \cos (n \pi)-0+\left.\frac{1}{n^{2} \pi^{2}} \operatorname{Sin}^{1}(n \pi t)\right|_{0} ^{1}\right. & v=\frac{-1}{n \pi} \cos (n \pi t) \\
& =4\left(\frac{-1}{n \pi}\right)(-1)^{n}=\frac{4(-1)^{n+1}}{n \pi}
\end{array}
$$

So $f(t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi} \operatorname{Sin}(n \pi t)$

The DE is

$$
\begin{aligned}
x^{\prime \prime}+64 x & =\frac{1}{2} \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi} \sin (n \pi t) \\
& =\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
\end{aligned}
$$

In the spirit of the meth od of undetermined coefficients, assume $x_{p}=\sum_{n=1}^{\infty} B_{n} \sin (n \pi t)$

Substitute x_{p} into the D.E.

$$
\begin{aligned}
x_{p}^{\prime} & =\sum_{n=1}^{\infty} B_{n}(n \pi) \cos (n \pi t) \\
x_{p}^{\prime \prime} & =\sum_{n=1}^{\infty}-B_{n}(n \pi)^{2} \sin (n \pi t) \\
x_{p}^{\prime \prime}+64 x_{p} & =\sum_{n=1}^{\infty}-(n \pi)^{2} B_{n} \sin (n \pi t)+64 \sum_{n=1}^{\infty} B_{n} \sin (n \pi t) \\
& =\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
\end{aligned}
$$

Collecting on the left

$$
\sum_{n=1}^{\infty}\left[\left(-(n \pi)^{2}+64\right) B_{n} \sin (n \pi t)\right]=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \operatorname{Sin}(n \pi t)
$$

Match tern by term

$$
\left(64-(n \pi)^{2}\right) B_{n}=\frac{2(-1)^{n+1}}{n \pi}
$$

Note

$$
64-n^{2} \pi^{2} \neq 0
$$

for all

$$
n
$$

The particular solution is

$$
x_{p}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)} \sin (n \pi t) \text {. }
$$

An Eigenvalue Problem

An eigenvalue problem consists of a Boundary Value Problem which includes an unknown parameter λ. The task is to determine values of the parameter and corresponding nonzero functions (i.e. nontrivial) that solve the BVP. The values are called eigenvalues and the corresponding functions are called eigenfunction.

Example: Solve $-u^{\prime \prime}=\lambda u$ for $0<x<1$ subject to $u(0)=0$ and $u(1)=0$.

We can write the DE as

$$
u^{\prime \prime}+\lambda u=0 \quad \text { with } \quad u(0)=0, u(1)=0
$$

The characteristic equation is

$$
m^{2}+\lambda=0
$$

we il consida three cases $\lambda=0, \lambda<0$ and $\lambda>0$

Case 1: $\lambda=0 \quad m^{2}=0 \quad m=0$ repeated root

$$
u_{1}=e^{0 x}=1 \quad \text { and } \quad u_{2}=x e^{0 x}=x
$$

The general solution is $u=C_{1}+C_{2} x$
Impose $u(0)=0$ and $u(1)=0$

$$
\left.\begin{array}{l}
u(0)=c_{1}+c_{2} \cdot 0=0 \quad \Rightarrow \quad c_{1}=0 \\
u(1)=c_{2} \cdot 1=0 \quad \Rightarrow \quad c_{2}=0
\end{array}\right\}
$$

$\lambda=0$ only gives the trisidel solution $h(x)=0$.

Zero is not an eigen value.

Case 2: $\lambda<0$, let $\lambda=-\alpha^{2}$ for $\alpha>0$
Then $\quad m^{2}-\alpha^{2}=0 \Rightarrow m= \pm \alpha$

$$
\begin{gathered}
u_{1}=e^{\alpha x} \text { and } u_{2}=e^{-\alpha x} \\
u=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}
\end{gathered}
$$

Apply $u(0)=0$ and $u(1)=0$

$$
\begin{gathered}
u(0)=c_{1} e^{0}+c_{2} e^{0}=0 \Rightarrow c_{1}+c_{2}=0 \\
u(1)=c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 \Rightarrow c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 \\
c_{1}+c_{2}=0 \Rightarrow c_{2}=-c_{1} \\
c_{1} e^{\alpha}-c_{1} e^{-\alpha}=0 \Rightarrow c_{1}\left(e^{\alpha}-e^{-\alpha}\right)=0 \\
c_{1} e^{\alpha}=c_{1} e^{-\alpha} \\
\Rightarrow c_{1} e^{2 \alpha}=c_{1}
\end{gathered}
$$

eithere $e^{2 \alpha}=1$ or $c_{1}=0$
$\sin u \quad \alpha>0, \quad e^{2 \alpha} \neq 1$ so $c_{1}=0$.
$C_{2}=-C_{1}=0$ so again we only get the trivial solution $u(x)=0$.

No eigen values are negative.

Case 3: $\lambda>0$ Lat $\lambda=\alpha^{2}$ for $\alpha>0$
Then $m^{2}+\alpha^{2}=0 \Rightarrow m= \pm i \alpha$

$$
u_{1}=\cos (\alpha x) \quad u_{2}=\sin (\alpha x)
$$

So

$$
u(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)
$$

Apply $u(0)=0$ and $u(1)=0$

$$
\begin{aligned}
& u(0)=c_{1} \cos 0+c_{2} \sin 0=c_{1}=0 \\
& u(1)=c_{2} \sin (\alpha)=0
\end{aligned}
$$

either $C_{2}=0$ (not interesting)
or

$$
\sin (\alpha)=0
$$

There are infinitely mong solutions

$$
\alpha=n \pi \quad \text { for } n=1,2,3, \ldots .
$$

The eigen values are

$$
\lambda_{n}=\alpha_{n}^{2}=n^{2} \pi^{2}
$$

The associated risen functions are $u_{n}=\operatorname{Sin}(n \pi x)$.

A Related Eigenvalue Problem

It can be shown that the problem

$$
-u^{\prime \prime}=\lambda u \quad \text { for } 0<x<1 \quad \text { subject to } \quad u^{\prime}(0)=u^{\prime}(1)=0
$$

has eigenvalues and eigen functions

$$
\lambda_{n}=n^{2} \pi^{2} \quad n \geq 0, \quad u_{0}=1, \quad u_{n}(x)=\cos (n \pi x), \quad n \geq 1
$$

Another Related Eigenvalue Problem

It can be shown that the problem

$$
-u^{\prime \prime}=\lambda u \text { for } 0<x<1 \quad \text { subject to } \quad u(0)=u(1) \text { and } u^{\prime}(0)=u^{\prime}(1)
$$

has eigenvalues and eigen functions

$$
\lambda_{n}=n^{2} \pi^{2} \quad n \geq 0, \quad u_{0}(x)=1, \quad u_{n}(x)=a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)
$$

